Biophysical principles predict fitness of SARS-CoV-2 variants

严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 Sars病毒 计算生物学 生物 病毒学 医学 传染病(医学专业) 疾病 病理 爆发
作者
Dianzhuo Wang,Marc‐Étienne Huot,Vaibhav Mohanty,Eugene I. Shakhnovich
出处
期刊:Biophysical Journal [Elsevier]
卷期号:123 (3): 131a-131a
标识
DOI:10.1016/j.bpj.2023.11.908
摘要

SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the discovery of a fitness function based on protein folding and binding thermodynamics, we unravel the relationship between the fitness contribution of the RBD and its biophysical properties. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by binding constants to cell receptors and antibodies, onto the fitness landscape for variants ranging from the ancestral Wuhan Hu-1 to the Omicron BA.1. We validate our findings through experimentally measured binding affinities and population data on frequencies of variants. Our model forms the basis for a comprehensive epistatic map for SARS-CoV-2 RBD, relating the genotype to fitness. Our study thus sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Res_M发布了新的文献求助10
2秒前
2秒前
11完成签到,获得积分10
3秒前
3秒前
4秒前
所所应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
FashionBoy应助CDQ采纳,获得10
8秒前
11发布了新的文献求助10
9秒前
Jasper应助yjpppppp采纳,获得10
9秒前
勤奋日记本完成签到,获得积分10
11秒前
orixero应助超级白猫采纳,获得10
11秒前
dhfify完成签到,获得积分10
12秒前
Jaja完成签到,获得积分10
13秒前
zp完成签到,获得积分20
13秒前
xhz完成签到,获得积分10
14秒前
14秒前
yjpppppp发布了新的文献求助10
21秒前
大模型应助研友_ZlqeD8采纳,获得10
22秒前
ddd完成签到 ,获得积分10
22秒前
24秒前
27秒前
28秒前
29秒前
Felicity发布了新的文献求助10
30秒前
称心怀莲发布了新的文献求助10
35秒前
tetrakis发布了新的文献求助10
35秒前
清爽的亦云完成签到,获得积分10
36秒前
领导范儿应助111采纳,获得10
38秒前
bai完成签到 ,获得积分10
38秒前
桐桐应助xiaoH2001采纳,获得10
39秒前
稳重半烟完成签到,获得积分10
42秒前
43秒前
45秒前
47秒前
Ploaris完成签到 ,获得积分10
47秒前
蘇煦雯完成签到,获得积分10
51秒前
52秒前
GeniusC完成签到,获得积分10
53秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Comparative Rhetoric: A[n] Historical and Cross-Cultural Introduction 500
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 300
Transformerboard III 300
Natur im Sinn 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2359002
求助须知:如何正确求助?哪些是违规求助? 2066295
关于积分的说明 5160593
捐赠科研通 1795302
什么是DOI,文献DOI怎么找? 896637
版权声明 557615
科研通“疑难数据库(出版商)”最低求助积分说明 478609