亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Classification of Plant Seedlings: Distinguishing Crop Seedlings from Weed Seedlings Using MobileNetV2 Transfer Learning Model with Fine-Tuning Layers

杂草 作物 学习迁移 计算机科学 人工智能 环境科学 植物 农学 生物
作者
Rudresh Pillai,Neha Sharma,Sonal Malhotra,Sarishma Dangi,Rupesh Gupta
标识
DOI:10.1109/smartgencon60755.2023.10442772
摘要

The presented research endeavours to address the notable challenge of distinguishing between crop seedlings and weed seedlings within the disciplines of agriculture and botany. Accurate classification of these categorizations is necessary in order to enhance agricultural practises and optimise crop output. To effectively tackle the issue, the adoption of a comprehensive approach was proposed that involves the use of the MobileNetV2 transfer learning model, together with the integration of fine-tuning layers. The study utilised an extensive dataset of 11,078 annotated images of plant seedlings, encompassing a diverse array of species. In order to enhance the robustness of the model and mitigate imbalances in class distribution, data augmentation techniques were implemented. The dataset was divided into three distinct categories, specifically the training, validation, and testing sets. The training process involved utilising a dataset consisting of 8973 photographs. Subsequently, the model's performance was evaluated by employing a separate set of 1108 images that had not been encountered during the training phase. The model utilised in this study was constructed based on the MobileNetV2 architecture, a well-known framework recognised for its exceptional performance and effectiveness in the field of picture categorization. In order to adapt to the specific attributes of the dataset, custom layers were integrated for the purpose of fine-tuning. In the phase of experimentation, a confusion matrix was utilised to evaluate the performance, resulting in a noteworthy accuracy rate of 97%. This result demonstrates the capacity of the model to effectively decrease the need for manual weed management and the dependence on chemical herbicides in the agricultural sector. Furthermore, our study provides a demonstration of the feasibility of employing deep learning and transfer learning techniques in comparable problems of plant species classification, hence presenting potential avenues for progress in the fields of agriculture and biology. In conclusion, our methodology has effectively showcased a precise approach in differentiating between crop and weed seedlings, therefore facilitating the adoption of sustainable agricultural practises and the protection of the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
ST发布了新的文献求助10
22秒前
嘻嘻完成签到,获得积分10
1分钟前
休斯顿完成签到,获得积分10
1分钟前
风轻轻完成签到 ,获得积分10
2分钟前
雾见春完成签到 ,获得积分10
2分钟前
q792309106发布了新的文献求助10
2分钟前
冷cool完成签到 ,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
4分钟前
秋日思语发布了新的文献求助10
4分钟前
晨晨完成签到 ,获得积分10
4分钟前
乐乐应助q792309106采纳,获得10
5分钟前
5分钟前
ZLL发布了新的文献求助10
5分钟前
ZLL发布了新的文献求助10
6分钟前
wlscj完成签到 ,获得积分10
6分钟前
国色不染尘完成签到,获得积分10
7分钟前
cmf完成签到 ,获得积分10
7分钟前
科研通AI6应助秋日思语采纳,获得10
7分钟前
zwb完成签到 ,获得积分10
8分钟前
lulu828完成签到,获得积分10
8分钟前
计划完成签到,获得积分10
8分钟前
9分钟前
q792309106发布了新的文献求助10
9分钟前
56发布了新的文献求助10
9分钟前
Lucas应助q792309106采纳,获得10
9分钟前
情怀应助ST采纳,获得10
10分钟前
xingsixs发布了新的文献求助10
10分钟前
10分钟前
ST发布了新的文献求助10
10分钟前
郗妫完成签到 ,获得积分10
10分钟前
三点前我必睡完成签到 ,获得积分10
10分钟前
Jasper应助56采纳,获得10
11分钟前
GingerF应助朝晖采纳,获得50
11分钟前
朝晖给朝晖的求助进行了留言
11分钟前
于清绝完成签到 ,获得积分10
12分钟前
gwbk完成签到,获得积分10
12分钟前
余馨怡发布了新的文献求助10
13分钟前
共享精神应助ST采纳,获得10
13分钟前
13分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211270
求助须知:如何正确求助?哪些是违规求助? 4387787
关于积分的说明 13663159
捐赠科研通 4247890
什么是DOI,文献DOI怎么找? 2330557
邀请新用户注册赠送积分活动 1328329
关于科研通互助平台的介绍 1281238