SVMD-TF-QS: An efficient and novel hybrid methodology for the wind speed prediction

计算机科学 人工智能 机器学习 数据挖掘
作者
Srihari Parri,Kiran Teeparthi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123516-123516 被引量:10
标识
DOI:10.1016/j.eswa.2024.123516
摘要

Wind power is gaining significant attention as a renewable and environmentally friendly energy source. However, accurate forecasting of wind speed poses challenges due to its inherent variability and stochastic nature. To address this issue, a novel hybrid model (SVMD-TF-QS) for wind speed prediction (WSP) is proposed in this study. The model combines successive variational mode decomposition (SVMD) with a Transformer (TF) based model that incorporates a novel query selection (QS) mechanism. The SVMD component of the hybrid model offers several improvements, including enhanced mode extraction, adaptive mode determination, robustness against initial values of center frequencies, and improved computational efficiency. By decomposing the wind speed data using SVMD, the transformed data is then fed into the TF-QS model. The proposed approach effectively combines the benefits of the QS mechanism and the Transformer model to accurately predict wind speed while minimizing computational load. This is achieved by introducing a deterministic algorithm within the QS mechanism, which computes a sparse approximation of the attention matrix used in the Transformer model. This further enhances the predictive capabilities of the hybrid model. To evaluate its performance and generalization capability, extensive assessments are conducted using data from two wind farms located in Leicester and Portland. The assessments cover various time periods, including 5 min, 10 min, 15 min, 30 min, 1 h, and 2 h WSP intervals. The results of this study provide robust evidence supporting the effectiveness of the proposed hybrid model in WSP for the diverse wind farms and scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qin1172001发布了新的文献求助10
1秒前
tgoutgou发布了新的文献求助10
2秒前
leoric完成签到,获得积分10
2秒前
3秒前
冰熊熊壹個完成签到,获得积分10
4秒前
w934420513发布了新的文献求助30
4秒前
7秒前
大个应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
lynn应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
专注的千筹完成签到,获得积分10
14秒前
叫啥不吃饭完成签到,获得积分10
15秒前
lulu666完成签到 ,获得积分10
16秒前
快乐慕灵完成签到,获得积分10
19秒前
19秒前
23秒前
25秒前
28秒前
28秒前
小譆驳回了Orange应助
29秒前
大饼大饼发布了新的文献求助10
35秒前
dwfwq完成签到,获得积分10
35秒前
andy发布了新的文献求助10
35秒前
邢契完成签到,获得积分10
37秒前
37秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366