A transformer model blended with CNN and denoising autoencoder for inter-patient ECG arrhythmia classification

心跳 计算机科学 自编码 人工智能 模式识别(心理学) 编码器 变压器 降噪 试验装置 深度学习 电压 操作系统 物理 计算机安全 量子力学
作者
Yong Xia,Yueqi Xiong,Kuanquan Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105271-105271 被引量:24
标识
DOI:10.1016/j.bspc.2023.105271
摘要

Researchers have proposed numerous novel features and models under the intra-patient paradigm. However, their performance suffers when considering the inter-patient paradigm. While some state-of-the-art results have been reported in recent years under the inter-patient paradigm, many of them deviate from the standard test protocol. The performance of minority classes remains unsatisfactory for practical applications under strict test protocols. This paper presents a novel framework based on a lightweight Transformer combined with CNN and a denoising autoencoder, which enhances the performance of minority classes under the standard test protocol. The proposed model includes a new seq2seq network that extracts local features from a single heartbeat using CNN or a denoising encoder, and attends to global features from neighboring heartbeats based on a lightweight Transformer encoder. In particular, we pretrained the autoencoder on the MIT-BIH dataset and an additional dataset, considering several transfer modes for feature representation. We organized multiple continuous heartbeats into a vector sequence, where each heartbeat incorporates information from its neighbors to improve feature representation. The model evaluation was conducted using the MIT-BIH inter-patient dataset, following the AAMI standard. The Transformer with CNN embedding achieved a total accuracy of 97.66% on the test set, while the Transformer with pretrained denoising autoencoder achieved a total accuracy of 97.93%. These results demonstrate the promising performance of our models for imbalanced inter-patient ECG classification under the standard test protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaq009发布了新的文献求助10
1秒前
巫马炎彬完成签到 ,获得积分10
3秒前
5秒前
蓝色发布了新的文献求助10
6秒前
8秒前
wangbw完成签到,获得积分10
9秒前
11秒前
博修发布了新的文献求助10
12秒前
14秒前
567发布了新的文献求助10
15秒前
费雪卉给angelinazh的求助进行了留言
15秒前
李成哲完成签到,获得积分10
15秒前
16秒前
con完成签到,获得积分20
16秒前
17秒前
CodeCraft应助滴滴滴采纳,获得10
17秒前
霸气梦菲完成签到,获得积分10
17秒前
20秒前
Modest完成签到,获得积分10
22秒前
蓝色发布了新的文献求助10
22秒前
吴邪发布了新的文献求助10
22秒前
笑点低的盼山关注了科研通微信公众号
23秒前
和谐煜祺完成签到,获得积分10
25秒前
汉堡包应助欣慰的成仁采纳,获得10
25秒前
x5kyi完成签到,获得积分10
27秒前
allrubbish完成签到,获得积分10
27秒前
29秒前
博修发布了新的文献求助10
30秒前
31秒前
lby完成签到 ,获得积分10
32秒前
33秒前
情怀应助ellience采纳,获得10
34秒前
tx完成签到,获得积分10
36秒前
36秒前
蓝色发布了新的文献求助10
37秒前
深情安青应助梓曦采纳,获得10
37秒前
38秒前
干果发布了新的文献求助10
38秒前
Limerencia完成签到,获得积分10
39秒前
难过刚关注了科研通微信公众号
39秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445