已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review

系统回顾 医学 人工智能 射线照相术 梅德林 医学物理学 肺结核 胸片 机器学习 放射科 病理 计算机科学 政治学 法学
作者
Seng Hansun,Ahmadreza Argha,Siaw‐Teng Liaw,Branko G. Celler,Guy B. Marks
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e43154-e43154 被引量:22
标识
DOI:10.2196/43154
摘要

Background Tuberculosis (TB) was the leading infectious cause of mortality globally prior to COVID-19 and chest radiography has an important role in the detection, and subsequent diagnosis, of patients with this disease. The conventional experts reading has substantial within- and between-observer variability, indicating poor reliability of human readers. Substantial efforts have been made in utilizing various artificial intelligence–based algorithms to address the limitations of human reading of chest radiographs for diagnosing TB. Objective This systematic literature review (SLR) aims to assess the performance of machine learning (ML) and deep learning (DL) in the detection of TB using chest radiography (chest x-ray [CXR]). Methods In conducting and reporting the SLR, we followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A total of 309 records were identified from Scopus, PubMed, and IEEE (Institute of Electrical and Electronics Engineers) databases. We independently screened, reviewed, and assessed all available records and included 47 studies that met the inclusion criteria in this SLR. We also performed the risk of bias assessment using Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) and meta-analysis of 10 included studies that provided confusion matrix results. Results Various CXR data sets have been used in the included studies, with 2 of the most popular ones being Montgomery County (n=29) and Shenzhen (n=36) data sets. DL (n=34) was more commonly used than ML (n=7) in the included studies. Most studies used human radiologist’s report as the reference standard. Support vector machine (n=5), k-nearest neighbors (n=3), and random forest (n=2) were the most popular ML approaches. Meanwhile, convolutional neural networks were the most commonly used DL techniques, with the 4 most popular applications being ResNet-50 (n=11), VGG-16 (n=8), VGG-19 (n=7), and AlexNet (n=6). Four performance metrics were popularly used, namely, accuracy (n=35), area under the curve (AUC; n=34), sensitivity (n=27), and specificity (n=23). In terms of the performance results, ML showed higher accuracy (mean ~93.71%) and sensitivity (mean ~92.55%), while on average DL models achieved better AUC (mean ~92.12%) and specificity (mean ~91.54%). Based on data from 10 studies that provided confusion matrix results, we estimated the pooled sensitivity and specificity of ML and DL methods to be 0.9857 (95% CI 0.9477-1.00) and 0.9805 (95% CI 0.9255-1.00), respectively. From the risk of bias assessment, 17 studies were regarded as having unclear risks for the reference standard aspect and 6 studies were regarded as having unclear risks for the flow and timing aspect. Only 2 included studies had built applications based on the proposed solutions. Conclusions Findings from this SLR confirm the high potential of both ML and DL for TB detection using CXR. Future studies need to pay a close attention on 2 aspects of risk of bias, namely, the reference standard and the flow and timing aspects. Trial Registration PROSPERO CRD42021277155; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=277155
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoqi发布了新的文献求助10
1秒前
后来应助我是站长才怪采纳,获得10
1秒前
1秒前
火星上的幼南完成签到,获得积分10
2秒前
meow完成签到 ,获得积分10
2秒前
2秒前
3秒前
传奇3应助jiayou采纳,获得10
3秒前
科研通AI5应助wwdd采纳,获得10
7秒前
子訡发布了新的文献求助10
8秒前
8秒前
HY发布了新的文献求助10
8秒前
11秒前
包驳发布了新的文献求助10
11秒前
辣椒完成签到 ,获得积分10
13秒前
纯真的南琴完成签到,获得积分10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
LMNg6n应助科研通管家采纳,获得30
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
LMNg6n应助科研通管家采纳,获得20
16秒前
weiwenzuo发布了新的文献求助10
16秒前
16秒前
乐观的蜗牛完成签到 ,获得积分10
19秒前
张元东完成签到 ,获得积分10
20秒前
有川洋一完成签到 ,获得积分10
24秒前
hss完成签到 ,获得积分10
24秒前
不辣的完成签到 ,获得积分10
27秒前
28秒前
29秒前
AdnanKhan完成签到,获得积分10
30秒前
31秒前
Jasper应助Billy采纳,获得10
32秒前
32秒前
LBY发布了新的文献求助10
33秒前
XXDY发布了新的文献求助10
33秒前
南风发布了新的文献求助30
35秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418473
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494