亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk prediction models of depression in older adults with chronic diseases

萧条(经济学) 医学 精神科 心理学 临床心理学 经济 宏观经济学
作者
Ying Zheng,Chu Zhang,Yuwen Liu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:359: 182-188 被引量:15
标识
DOI:10.1016/j.jad.2024.05.078
摘要

Detecting potential depression and identifying the critical predictors of depression among older adults with chronic diseases are essential for timely intervention and management of depression. Therefore, risk predictive models of depression in elderly people should to be further explored. A total of 3959 respondents aged 60 years or older from the wave four survey of the China Health and Retired Longitudinal Study (CHARLS) were included in this study. We used five machine learning (ML) algorithms and three data balancing techniques to construct risk prediction models (RPMs) of depression and calculated feature importance scores to determine which features are essential to depression. The prevalence of depression was 19.2 % among older Chinese adults with chronic diseases in the wave four survey. The random forest (RF) model was more accurate than the other models after balancing the data using the Synthetic Minority Oversampling Technique (SMOTE), with an area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) of 0.957 and 0.920, respectively, a balanced accuracy of 0.891 and a sensitivity of 0.875. Furthermore, we further identified several important predictors among different sex patients. Further research on the clinical impact study of our models and external validation are needed. After several techniques were used to address class imbalanced problem, most RPMs achieved satisfactory accuracy in predicting depression among elderly people with chronic diseases. The RPMs may thus become valuable screening tools for both older individuals and healthcare practitioners to assess the risk of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
2秒前
4秒前
Haimian发布了新的文献求助10
10秒前
32秒前
科研通AI5应助charm采纳,获得10
37秒前
charm完成签到,获得积分10
50秒前
1分钟前
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Me发布了新的文献求助10
1分钟前
1分钟前
潘潘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
webmaster完成签到,获得积分10
3分钟前
3分钟前
Me发布了新的文献求助10
3分钟前
howgoods完成签到 ,获得积分10
3分钟前
FengyaoWang完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
xx发布了新的文献求助10
5分钟前
小盼虫完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助liuchzzyy采纳,获得10
6分钟前
852应助爱笑雁易采纳,获得10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972805
求助须知:如何正确求助?哪些是违规求助? 3517093
关于积分的说明 11186173
捐赠科研通 3252592
什么是DOI,文献DOI怎么找? 1796556
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805681