亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Subspace-Contrastive Multi-View Clustering

聚类分析 子空间拓扑 计算机科学 人工智能 模式识别(心理学) 数学 自然语言处理 数据挖掘
作者
Lele Fu,Sheng Huang,Lei Zhang,Jing‐Hua Yang,Zibin Zheng,Chuanfu Zhang,Chuan Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (9): 1-35 被引量:7
标识
DOI:10.1145/3674839
摘要

Most multi-view clustering methods based on shallow models are limited in sound nonlinear information perception capability, or fail to effectively exploit complementary information hidden in different views. To tackle these issues, we propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach. Specifically, SCMC utilizes a set of view-specific auto-encoders to map the original multi-view data into compact features capturing its nonlinear structures. Considering the large semantic gap of data from different modalities, we project multiple heterogeneous features into a joint semantic space, namely the embedded compact features are passed through the self-expression layers to learn the subspace representations, respectively. In order to enhance the discriminability and efficiently excavate the complementarity of various subspace representations, we use the contrastive strategy to maximize the similarity between positive pairs while differentiate negative pairs. Thus, the graph regularization is employed to encode the local geometric structure within varying subspaces for optimizing the consistent affinity matrix. Furthermore, to endow the proposed SCMC with the ability of handling the multi-view out-of-samples, we develop a consistent sparse representation (CSR) learning mechanism over the in-samples. To demonstrate the effectiveness of the proposed model, we conduct a large number of comparative experiments on ten challenging datasets, and the experimental results show that SCMC outperforms existing shallow and deep multi-view clustering methods. In addition, the experimental results on out-of-samples illustrate the effectiveness of the proposed CSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CZJ完成签到,获得积分10
3秒前
4秒前
MRIFFF完成签到,获得积分10
7秒前
清风朗月发布了新的文献求助10
9秒前
13秒前
14秒前
15秒前
万能图书馆应助LIUAiwei采纳,获得10
16秒前
wandali发布了新的文献求助30
20秒前
21秒前
禾中丨小骨完成签到 ,获得积分10
22秒前
25秒前
烟花应助范东乐采纳,获得10
26秒前
QuIT完成签到 ,获得积分10
27秒前
29秒前
万能图书馆应助清风朗月采纳,获得10
38秒前
54秒前
高贵的以山完成签到,获得积分10
56秒前
科研通AI6应助wandali采纳,获得10
1分钟前
1分钟前
1分钟前
NI完成签到 ,获得积分10
1分钟前
1分钟前
wop111完成签到,获得积分0
1分钟前
1分钟前
伶俐惜萱完成签到,获得积分20
1分钟前
LLL发布了新的文献求助10
1分钟前
bkagyin应助cchh采纳,获得10
1分钟前
1分钟前
小二郎应助mumu采纳,获得10
1分钟前
清风朗月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
轻松板栗发布了新的文献求助10
1分钟前
18878732126完成签到,获得积分10
1分钟前
优雅人龙完成签到,获得积分10
1分钟前
1分钟前
2分钟前
fly完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470027
求助须知:如何正确求助?哪些是违规求助? 4572974
关于积分的说明 14337895
捐赠科研通 4499883
什么是DOI,文献DOI怎么找? 2465445
邀请新用户注册赠送积分活动 1453805
关于科研通互助平台的介绍 1428359