Dynamic Graph Regularization for Multi-Stream Concept Drift Self-adaptation

计算机科学 概念漂移 正规化(语言学) 图形 图论 理论计算机科学 数据挖掘 人工智能 数据流挖掘 数学 组合数学
作者
Ming Zhou,Jie Lü,Pengqian Lu,Guangquan Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 6016-6028
标识
DOI:10.1109/tkde.2024.3401156
摘要

Concept drift is an inevitable problem in non-stationary data stream environments, due to changes in data distribution over time. In practical applications, multi-stream data is more common and complex than single-stream data, yet they have received little attention. Addressing the concept drift problem while mining correlations between data streams has become a significant challenge. Several research works focus on capturing the correlation between streams using graph neural networks (GNNs), which provides valuable insights. However, these methods fix the correlation graph structure after training and are unable to adapt to the new data distribution with dynamic correlations during testing. To bridge this gap, we propose a novel concept drift self-adaptation framework based on dynamic graph regularization for multi-stream, named Multi-stream Self-adaptation based on Graph Regularization (MSGR). A new graph neural network architecture is proposed to capture deep spatio-temporal correlations and learn a correlation graph structure without any pre-defined graphs. Each node on the graph represents a stream. The correlation graph structure is constructed through Gumbel sampling and an adaptive matrix from the perspective of stream pairs. Thus we attain a high-performance GNN as the base prediction model for the multi-stream multi-step prediction task in the testing stage. To adapt to the new data distribution, we design a self-adaptation mechanism performed by assigning dynamic learning weight for newly arriving samples. Intuitively, we should assign larger learning weights for relevant samples when drift occurs. The self-adaptation process is accomplished by the sub-graph updating and the proposed graph regularization. Error-based drift detection is integrated into the framework. When drift is detected, the weight for sub-graph updating is increased by adjusting the regularization coefficient. In this way, regardless of the type and degree of concept drift occurring on one or more streams, MSGR can achieve high self-adaptation performance and provide accurate prediction results consistently. The comprehensive testing results on both real-world and synthetic datasets show that MSGR can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
没有昵称发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
10秒前
344uyuhhjkfjjhgv完成签到,获得积分10
10秒前
14秒前
解语花完成签到,获得积分10
15秒前
17秒前
dreamer完成签到 ,获得积分10
17秒前
刘亿应助塇塇采纳,获得20
17秒前
票子完成签到,获得积分10
19秒前
霸气的冰旋完成签到 ,获得积分10
19秒前
李健应助云鲲采纳,获得10
20秒前
23秒前
TIMF14完成签到,获得积分10
25秒前
26秒前
竹子发布了新的文献求助10
26秒前
26秒前
斯文败类应助岳岳岳采纳,获得10
30秒前
ACESSt发布了新的文献求助10
31秒前
wanci应助都兰采纳,获得10
33秒前
bingsci发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助30
33秒前
34秒前
35秒前
阿艺完成签到,获得积分10
37秒前
38秒前
FashionBoy应助ACESSt采纳,获得10
38秒前
39秒前
闪闪储完成签到,获得积分10
41秒前
云鲲发布了新的文献求助10
41秒前
42秒前
45秒前
都兰发布了新的文献求助10
45秒前
AAA论文求过完成签到 ,获得积分10
46秒前
47秒前
脑洞疼应助bingsci采纳,获得10
48秒前
kai发布了新的文献求助10
50秒前
50秒前
张明发布了新的文献求助10
52秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865015
求助须知:如何正确求助?哪些是违规求助? 3407392
关于积分的说明 10654120
捐赠科研通 3131465
什么是DOI,文献DOI怎么找? 1727064
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780166