Exploring Feature Selection With Limited Labels: A Comprehensive Survey of Semi-Supervised and Unsupervised Approaches

计算机科学 特征选择 选择(遗传算法) 人工智能 特征(语言学) 无监督学习 机器学习 模式识别(心理学) 数据挖掘 情报检索 哲学 语言学
作者
Guojie Li,Zhiwen Yu,Kaixiang Yang,Mianfen Lin,C. L. Philip Chen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-20 被引量:7
标识
DOI:10.1109/tkde.2024.3397878
摘要

Feature selection is a highly regarded research area in the field of data mining, as it significantly enhances the efficiency and performance of high-dimensional data analysis by eliminating redundant and irrelevant features. Despite the ease of data acquisition, labeling data remains a laborious and expensive task. To leverage the abundance of unlabeled data, researchers have proposed various feature selection methods that operate with limited labels, including semi-supervised feature selection and unsupervised feature selection. However, a comprehensive review encompassing a thorough overview of feature selection algorithms with limited labels is lacking. To bridge this gap, this paper conducts a comprehensive exploration of feature selection methods specifically tailored to limited-label scenarios. These methods are systematically classified into two primary categories: semi-supervised and unsupervised feature selection. Additionally, by introducing a novel taxonomy and discussing future challenges, this survey aims to provide researchers with a comprehensive and in-depth understanding of feature selection in limited-label scenarios. Moreover, it aims to offer valuable insights that can guide further research and development in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助HJJHJH采纳,获得10
1秒前
LYchem完成签到,获得积分10
1秒前
顾矜应助眯眯眼的初夏采纳,获得10
1秒前
aji发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
我是老大应助小x采纳,获得10
6秒前
7秒前
乐乐应助宇文向雪采纳,获得10
8秒前
8秒前
小海螺发布了新的文献求助10
8秒前
谈笑间应助lq采纳,获得10
8秒前
张鑫发布了新的文献求助10
9秒前
打打应助晏晏采纳,获得10
9秒前
Lucas应助cindy采纳,获得10
9秒前
科研通AI5应助松鼠15111采纳,获得10
9秒前
852应助钟容采纳,获得30
9秒前
10秒前
橘色天际线完成签到,获得积分10
10秒前
guozizi发布了新的文献求助10
10秒前
10秒前
周洋洋完成签到 ,获得积分10
11秒前
11秒前
淡然冬灵应助Cherish采纳,获得80
12秒前
12秒前
yan完成签到,获得积分10
12秒前
12秒前
若雨凌风应助wh采纳,获得20
13秒前
13秒前
14秒前
科研通AI5应助戴志坚采纳,获得100
14秒前
小鲤鱼发布了新的文献求助10
15秒前
谈笑间应助Yzh采纳,获得10
15秒前
七七八八发布了新的文献求助10
15秒前
和谐的万宝路完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462