A feature enhanced EEG compression model using asymmetric encoding–decoding network *

计算机科学 脑电图 解码方法 人工智能 数据压缩 编码(内存) 特征(语言学) 模式识别(心理学) 语音识别 压缩(物理) 算法 神经科学 物理 心理学 语言学 哲学 热力学
作者
Xiangcun Wang,Jiacai Zhang,Xia Wu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036013-036013 被引量:1
标识
DOI:10.1088/1741-2552/ad48ba
摘要

Abstract Objective. Recently, the demand for wearable devices using electroencephalography (EEG) has increased rapidly in many fields. Due to its volume and computation constraints, wearable devices usually compress and transmit EEG to external devices for analysis. However, current EEG compression algorithms are not tailor-made for wearable devices with limited computing and storage. Firstly, the huge amount of parameters makes it difficult to apply in wearable devices; secondly, it is tricky to learn EEG signals’ distribution law due to the low signal-to-noise ratio, which leads to excessive reconstruction error and suboptimal compression performance. Approach. Here, a feature enhanced asymmetric encoding–decoding network is proposed. EEG is encoded with a lightweight model, and subsequently decoded with a multi-level feature fusion network by extracting the encoded features deeply and reconstructing the signal through a two-branch structure. Main results. On public EEG datasets, motor imagery and event-related potentials, experimental results show that the proposed method has achieved the state of the art compression performance. In addition, the neural representation analysis and the classification performance of the reconstructed EEG signals also show that our method tends to retain more task-related information as the compression ratio increases and retains reliable discriminative information after EEG compression. Significance. This paper tailors an asymmetric EEG compression method for wearable devices that achieves state-of-the-art compression performance in a lightweight manner, paving the way for the application of EEG-based wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Len完成签到,获得积分10
5秒前
HEIKU应助霜霰采纳,获得10
8秒前
16秒前
完美世界应助钟山采纳,获得10
18秒前
105完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
言非离完成签到 ,获得积分10
23秒前
raiychemj完成签到,获得积分10
24秒前
DONGmumu完成签到 ,获得积分10
33秒前
elvis850910完成签到,获得积分10
36秒前
养猪大户完成签到 ,获得积分10
39秒前
内向南风完成签到 ,获得积分10
40秒前
乐观的星月完成签到 ,获得积分10
40秒前
东方欲晓完成签到 ,获得积分0
45秒前
打打应助科研通管家采纳,获得10
47秒前
cctv18应助科研通管家采纳,获得10
47秒前
47秒前
cctv18应助科研通管家采纳,获得10
47秒前
cctv18应助科研通管家采纳,获得10
47秒前
cctv18应助科研通管家采纳,获得10
47秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
顾矜应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
cctv18应助科研通管家采纳,获得10
48秒前
coolkid应助科研通管家采纳,获得20
49秒前
cctv18应助科研通管家采纳,获得10
49秒前
cctv18应助科研通管家采纳,获得10
49秒前
zz完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助30
52秒前
sam完成签到,获得积分10
54秒前
Mark完成签到 ,获得积分10
59秒前
huangzsdy完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883857
求助须知:如何正确求助?哪些是违规求助? 3426171
关于积分的说明 10747083
捐赠科研通 3150984
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734