Research on machine learning hybrid framework by coupling grid-based runoff generation model and runoff process vectorization for flood forecasting

地表径流 过程(计算) 大洪水 网格 矢量化(数学) 计算机科学 环境科学 地理 并行计算 程序设计语言 生态学 考古 大地测量学 生物
作者
Chengshuai Liu,Chengshuai Liu,Chengshuai Liu,Wenzhong Li,Wenzhong Li,Chengshuai Liu,Wenzhong Li
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:364: 121466-121466
标识
DOI:10.1016/j.jenvman.2024.121466
摘要

One of the important non-engineering measures for flood forecasting and disaster reduction in watersheds is the application of machine learning flood prediction models, with Long Short-Term Memory (LSTM) being one of the most representative time series prediction models. However, the LSTM model has issues of underestimating peak flows and poor robustness in flood forecasting applications. Therefore, based on a thorough analysis of complex underlying surface attributes, this study proposes a framework for distinguishing runoff models and integrates a Grid-based Runoff Generation Model (GRGM). Simultaneously considering the time series characteristics of runoff processes, including rising, peak, and recession, a runoff process vectorization (RPV) method is proposed. In this study, a hybrid deep learning flood forecasting framework, GRGM-RPV-LSTM, is constructed by coupling the GRGM, RPV, and LSTM neural network models. Taking the Jialu River in the Zhongmu station control basin as an example, the model is validated using 18 instances of measured floods and compared with the LSTM and GRGM-LSTM models. The study shows that the GRGM model has a relative error and average coefficient of determination for simulating runoff of 8.41% and 0.976, respectively, indicating that considering the spatial distribution of runoff patterns leads to more accurate runoff calculations. Under the same lead time conditions, the GRGM-RPV-LSTM hybrid forecasting model has a Nash efficiency coefficient greater than 0.9, demonstrating better simulation performance compared to the GRGM-LSTM and LSTM models. As the lead time increases, the GRGM-RPV-LSTM model provides more accurate peak flow predictions and exhibits better robustness. The research findings can provide scientific basis for coordinated management of flood control and disaster reduction in watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
lmz完成签到,获得积分10
5秒前
lxh完成签到 ,获得积分10
5秒前
6秒前
dingm2发布了新的文献求助10
6秒前
贰卷发布了新的文献求助10
7秒前
大力水手不爱吃菠菜完成签到 ,获得积分10
8秒前
吹泡泡的红豆完成签到 ,获得积分10
11秒前
12秒前
打打应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得30
13秒前
Akim应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
lxy应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
沉默的婴完成签到 ,获得积分10
15秒前
15秒前
轨迹发布了新的文献求助20
17秒前
洗月完成签到,获得积分10
19秒前
20秒前
纯情母蟑螂完成签到 ,获得积分10
21秒前
22秒前
27秒前
实验室同学完成签到,获得积分10
28秒前
TOURIN平行完成签到,获得积分10
28秒前
大力水手不爱吃菠菜关注了科研通微信公众号
29秒前
纯情母蟑螂关注了科研通微信公众号
29秒前
yy关闭了yy文献求助
31秒前
32秒前
32秒前
无花果应助GGbond采纳,获得10
36秒前
斯文败类应助趙途嘵生采纳,获得10
37秒前
Alan发布了新的文献求助10
37秒前
38秒前
七七发布了新的文献求助30
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097250
求助须知:如何正确求助?哪些是违规求助? 3634879
关于积分的说明 11521967
捐赠科研通 3345316
什么是DOI,文献DOI怎么找? 1838543
邀请新用户注册赠送积分活动 906134
科研通“疑难数据库(出版商)”最低求助积分说明 823476