Protein Adsorption on Solid Surfaces: Data Mining, Database, Molecular Surface-Derived Properties, and Semiempirical Relationships

吸附 蛋白质吸附 等电点 材料科学 蛋白质数据库 数据库 计算机科学 化学 物理化学 有机化学 生物化学
作者
Matthew Cho,Zahra Mahmoodi,Prasad Shetty,Lauren R. Harrison,Maru Arias Montecillo,Ayyappasamy Sudalaiyadum Perumal,Gerardin Solana,Dan V. Nicolau,Dan V. Nicolau
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (22): 28290-28306 被引量:7
标识
DOI:10.1021/acsami.4c06759
摘要

Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge, here, data regarding protein adsorption reported in the last four decades was collected, checked for completeness and correctness, organized, and archived in an upgraded, freely accessible Biomolecular Adsorption Database, which is equivalent to a large-scale, ad hoc, crowd-sourced multifactorial experiment. The shape and physicochemical properties of the proteins present in the database were quantified on their molecular surfaces using an in-house program (ProMS) operating as an add-on to the PyMol software. Machine learning-based analysis indicated that protein adsorption on hydrophobic and hydrophilic surfaces is modulated by different sets of operational, structural, and molecular surface-based physicochemical parameters. Separately, the adsorption data regarding four "benchmark" proteins, i.e., lysozyme, albumin, IgG, and fibrinogen, was processed by piecewise linear regression with the protein monolayer acting as breakpoint, using the linearization of the Langmuir isotherm formalism, resulting in semiempirical relationships predicting protein adsorption. These relationships, derived separately for hydrophilic and hydrophobic surfaces, described well the protein concentration on the surface as a function of the protein concentration in solution, adsorbing surface contact angle, ionic strength, pH, and temperature of the carrying fluid, and the difference between pH and the isoelectric point of the protein. When applying the semiempirical relationships derived for benchmark proteins to two other "test" proteins with known PDB structure, i.e., β-lactoglobulin and α-lactalbumin, the errors of this extrapolation were found to be in a linear relationship with the dissimilarity between the benchmark and the test proteins. The work presented here can be used for the estimation of operational parameters modulating protein adsorption for various applications such as diagnostic devices, pharmaceuticals, biomaterials, or the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘小蕊完成签到,获得积分10
刚刚
ALOX完成签到,获得积分10
1秒前
wanci应助NIHAO采纳,获得10
1秒前
等待吐司应助简单若云采纳,获得10
1秒前
优乐美完成签到,获得积分10
2秒前
sajnk发布了新的文献求助10
2秒前
3秒前
Ava应助不会挂科采纳,获得10
3秒前
4秒前
朝朝发布了新的文献求助10
4秒前
aliensas发布了新的文献求助10
4秒前
暮雨初晴完成签到,获得积分10
7秒前
7秒前
秀秀发布了新的文献求助10
7秒前
情怀应助beizi采纳,获得10
7秒前
喔喔发布了新的文献求助10
9秒前
李爱国应助何雨航采纳,获得10
10秒前
10秒前
10秒前
zeppeli完成签到 ,获得积分10
12秒前
小杭76应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得30
12秒前
Orange应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
zz发布了新的文献求助10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
upupup应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
迷路雨寒应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299726
求助须知:如何正确求助?哪些是违规求助? 4447841
关于积分的说明 13843825
捐赠科研通 4333454
什么是DOI,文献DOI怎么找? 2378848
邀请新用户注册赠送积分活动 1374078
关于科研通互助平台的介绍 1339634