Hyper: A High-Performance and Memory-Efficient Learned Index via Hybrid Construction

计算机科学 架空(工程) 线程(计算) 索引(排版) 并发 内存管理 分布式计算 覆盖 操作系统 万维网
作者
Shunkang Zhang,Ji Qi,Xin Yao,André Brinkmann
标识
DOI:10.1145/3654948
摘要

Learned indexes use machine learning techniques to improve index construction. However, they often face a fundamental trade-off between performance and memory consumption, especially in dynamic environments with frequent insert and delete operations. This trade-off stems from the construction approaches used in learned indexes: The top-down approach increases performance at the cost of significant memory overhead, while the bottom-up approach focuses on memory efficiency but introduces performance issues due to prediction errors. % A unified solution that simultaneously optimizes performance and memory consumption in dynamic data management scenarios is therefore highly desirable. We propose Hyper, a highly efficient learned index with a novel two-phase hybrid construction approach. Our approach combines bottom-up construction for leaf nodes with top-down construction for inner nodes to achieve an optimal balance between performance and memory consumption. Hyper effectively handles concurrent writes and structure adjustments without sacrificing query performance. We evaluated Hyper on both simple and complex real-world datasets and compared it to seven state-of-the-art learned indexes and several traditional data structures for dynamic workloads. The evaluation results show that Hyper achieves a remarkable performance boost of up to 3.75× with significantly reduced index memory consumption of up to 1610× in the single-thread evaluation. In high concurrency scenarios, Hyper even achieves improvements up to 5.73×, 3.72×, and 3.99× in read-only, read-write, and write-only workloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到 ,获得积分10
刚刚
激情的乌龟完成签到,获得积分10
1秒前
七七发布了新的文献求助10
2秒前
3秒前
4秒前
Lucas应助Pupil采纳,获得10
11秒前
可靠小凝完成签到 ,获得积分10
12秒前
zy完成签到,获得积分10
13秒前
赘婿应助jjwen采纳,获得10
17秒前
18秒前
cdercder应助科研通管家采纳,获得20
18秒前
Leif应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
Leif应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Leif应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
七七完成签到,获得积分10
20秒前
21秒前
22秒前
小夏咕噜发布了新的文献求助10
25秒前
25秒前
qinghong发布了新的文献求助10
25秒前
laber应助会科研的胡萝卜采纳,获得30
26秒前
sljsb完成签到,获得积分10
26秒前
qks完成签到 ,获得积分10
28秒前
30秒前
会科研的胡萝卜完成签到,获得积分10
31秒前
黑大侠完成签到 ,获得积分10
31秒前
sljsb发布了新的文献求助10
32秒前
科研通AI5应助qinghong采纳,获得10
33秒前
qin123完成签到 ,获得积分10
42秒前
庆123发布了新的文献求助20
42秒前
领导范儿应助跪求采纳,获得10
44秒前
七七发布了新的文献求助10
46秒前
maxin完成签到,获得积分10
49秒前
红宝石设计局完成签到,获得积分10
50秒前
桐桐应助庆123采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535