Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers

意义(存在) 计算机科学 情报检索 探测器 四分位间距 医学物理学 航程(航空) 自然语言处理 人工智能 心理学 医学 外科 电信 材料科学 复合材料 心理治疗师
作者
Catherine A. Gao,Frederick M. Howard,Nikolay S. Markov,Emma Dyer,Siddhi Ramesh,Yuan Luo,Alexander T. Pearson
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1) 被引量:440
标识
DOI:10.1038/s41746-023-00819-6
摘要

Abstract Large language models such as ChatGPT can produce increasingly realistic text, with unknown information on the accuracy and integrity of using these models in scientific writing. We gathered fifth research abstracts from five high-impact factor medical journals and asked ChatGPT to generate research abstracts based on their titles and journals. Most generated abstracts were detected using an AI output detector, ‘GPT-2 Output Detector’, with % ‘fake’ scores (higher meaning more likely to be generated) of median [interquartile range] of 99.98% ‘fake’ [12.73%, 99.98%] compared with median 0.02% [IQR 0.02%, 0.09%] for the original abstracts. The AUROC of the AI output detector was 0.94. Generated abstracts scored lower than original abstracts when run through a plagiarism detector website and iThenticate (higher scores meaning more matching text found). When given a mixture of original and general abstracts, blinded human reviewers correctly identified 68% of generated abstracts as being generated by ChatGPT, but incorrectly identified 14% of original abstracts as being generated. Reviewers indicated that it was surprisingly difficult to differentiate between the two, though abstracts they suspected were generated were vaguer and more formulaic. ChatGPT writes believable scientific abstracts, though with completely generated data. Depending on publisher-specific guidelines, AI output detectors may serve as an editorial tool to help maintain scientific standards. The boundaries of ethical and acceptable use of large language models to help scientific writing are still being discussed, and different journals and conferences are adopting varying policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雨欣发布了新的文献求助10
1秒前
2秒前
qazx应助fishmire采纳,获得10
3秒前
CAOHOU应助huiliang采纳,获得10
3秒前
Archy发布了新的文献求助10
4秒前
mrknow完成签到,获得积分20
5秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
桐桐应助细腻的秋采纳,获得10
6秒前
顺利的青枫完成签到 ,获得积分10
7秒前
violet兰完成签到,获得积分20
7秒前
个性青亦关注了科研通微信公众号
9秒前
科研通AI2S应助mrknow采纳,获得10
9秒前
无花果应助研友_LJpYdZ采纳,获得10
9秒前
顺利的青枫关注了科研通微信公众号
11秒前
12秒前
沉寂发布了新的文献求助10
15秒前
dt发布了新的文献求助10
15秒前
baby完成签到,获得积分10
15秒前
研晓晓发布了新的文献求助10
16秒前
隐形曼青应助lll采纳,获得10
16秒前
lll发布了新的文献求助10
17秒前
染九发布了新的文献求助50
19秒前
火星上听寒完成签到,获得积分10
21秒前
orixero应助mrknow采纳,获得10
21秒前
23秒前
zz完成签到,获得积分10
23秒前
25秒前
个性青亦发布了新的文献求助30
25秒前
Ava应助光亮天蓉采纳,获得10
26秒前
zz发布了新的文献求助20
26秒前
包纪星关注了科研通微信公众号
26秒前
28秒前
哭唧唧发布了新的文献求助10
29秒前
31秒前
Bamboo发布了新的文献求助20
31秒前
lll发布了新的文献求助10
31秒前
勇敢的小狗完成签到 ,获得积分10
32秒前
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906027
求助须知:如何正确求助?哪些是违规求助? 3451606
关于积分的说明 10865426
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791203