Establishment of vascularized human retinal organoids from induced pluripotent stem cells

生物 类有机物 诱导多能干细胞 干细胞 细胞生物学 视网膜 人诱导多能干细胞 胚胎干细胞 遗传学 植物 基因
作者
Satoshi Inagaki,Shinsuke Nakamura,Yoshiki Kuse,Kota Aoshima,Michinori Funato,Masamitsu Shimazawa,Hideaki Hara
出处
期刊:Stem Cells [Oxford University Press]
被引量:2
标识
DOI:10.1093/stmcls/sxae093
摘要

Stem cell-derived retinal organoids (ROs) have been investigated for applications in regenerative medicine, retinal disease models, and compound safety evaluation. Although the development of 3D organoids has provided novel opportunities for innovation, some unresolved limitations continue to exist in organoid research. The passive diffusion of oxygen and nutrients limits the growth and functional gain of organoids. Vascularization may circumvent these problems because it allows oxygen and nutrients to enter the organoid core. In the present study, ROs and vascular organoids (VOs) were generated from healthy human induced pluripotent stem cells. We attempted to create vascular-like structures in ROs by co-culturing them with VO-derived vascular endothelial cells/pericytes. Our vascularized retinal organoids (vROs) contained type IV collagen- and CD31-positive vascular-like structures. The expression of the mature neuronal marker SMI-32 and SNCG was markedly higher in the vROs than in the ROs. When vROs were cultured under conditions that mimicked diabetes, their size and the number of retinal ganglion cells were significantly decreased. In conclusion, the co-culture of ROs with VO-derived cells enabled the production of ROs with vascular-like structures, and the vROs responded to severe diabetic retinopathy conditions. In summary, our findings underscore the potential of vROs as invaluable tools for elucidating disease mechanisms and screening therapeutic interventions for retinal vascular disorders, thereby paving the way for personalized medicine approaches in ophthalmology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Julie采纳,获得10
刚刚
小小完成签到,获得积分10
刚刚
fy发布了新的文献求助10
刚刚
刚刚
1秒前
研友_7LMron发布了新的文献求助10
1秒前
寜1完成签到,获得积分10
1秒前
22553发布了新的文献求助30
1秒前
绿绿完成签到,获得积分10
1秒前
Owen应助LPH采纳,获得30
2秒前
2秒前
2秒前
2秒前
青青发布了新的文献求助10
2秒前
gui发布了新的文献求助10
2秒前
CodeCraft应助pipipi采纳,获得10
2秒前
Hello应助dunganli采纳,获得10
3秒前
elysia完成签到,获得积分10
4秒前
甜甜玫瑰发布了新的文献求助10
4秒前
可爱的函函应助微笑采文采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
Cheetahhh发布了新的文献求助10
5秒前
dovejingling完成签到,获得积分10
5秒前
5秒前
笑点低绝义完成签到,获得积分10
5秒前
6秒前
jeff发布了新的文献求助20
6秒前
在路上应助要减肥的阿宇采纳,获得10
7秒前
安详梦芝发布了新的文献求助10
8秒前
777完成签到,获得积分10
8秒前
louis136116完成签到,获得积分10
8秒前
9秒前
青青发布了新的文献求助10
9秒前
惘闻发布了新的文献求助10
10秒前
10秒前
flyingPig2完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4298297
求助须知:如何正确求助?哪些是违规求助? 3823662
关于积分的说明 11970410
捐赠科研通 3465295
什么是DOI,文献DOI怎么找? 1900614
邀请新用户注册赠送积分活动 948500
科研通“疑难数据库(出版商)”最低求助积分说明 850857