已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods

计算机科学 疾病 生物信息学 肝功能不全 肝病 医学 人工智能 机器学习 计算生物学 内科学 生物
作者
Yi‐Hao Yu,Yuqi Yang,Qian Li,Jing Yuan,Yuguo Zha
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-96478-6
摘要

Early and accurate identification of patients at high risk of metabolic dysfunction-associated steatotic liver disease (MASLD) is critical to prevent and improve prognosis potentially. We aimed to develop and validate an explainable prediction model based on machine learning (ML) approaches for MASLD among the adult population. The national cross-sectional study collected data from the National Health and Nutrition Examination Survey from 2017 to 2020, consisting of 13,436 participants, who were randomly split into 70% training, 20% internal validation, and 10% external validation cohorts. MASLD was defined based on transient elastography and cardiometabolic risk factors. With 50 medical characteristics easily obtained, six ML algorithms were used to develop prediction models. Several evaluation parameters were used to compare the predictive performance, including the area under the receiver-operating-characteristic curve (AUC) and precision-recall (P-R) curve. The recursive feature elimination method was applied to select the optimal feature subset. The Shapley Additive exPlanations method offered global and local explanations for the model. The random forest (RF) model performed best in discriminative ability among 6 ML models, and the optimal 10-feature RF model was finally chosen. The final model could accurately predict MASLD in internal and external validation cohorts (AUC: 0.928, 0.918; area under P-R curve: 0.876, 0.863, respectively). The final model performed better than each of the traditional risk indicators for MASLD. An explainable 10-feature prediction model with excellent discrimination and calibration performance was successfully developed and validated for MASLD based on clinical data easily extracted using an RF algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangxin发布了新的文献求助10
2秒前
3秒前
动漫大师发布了新的文献求助30
4秒前
5秒前
5秒前
传统的故事关注了科研通微信公众号
6秒前
暖暖完成签到,获得积分10
6秒前
8秒前
TaoJ发布了新的文献求助10
9秒前
9秒前
9秒前
小二郎应助悠嘻嘻采纳,获得10
10秒前
科研小农民应助一堃采纳,获得10
11秒前
258完成签到,获得积分10
13秒前
落小兜完成签到,获得积分20
13秒前
14秒前
深情安青应助Hh采纳,获得10
16秒前
SiRui_Wang关注了科研通微信公众号
17秒前
19秒前
乐观的莆发布了新的文献求助10
19秒前
美丽的又菡完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
24秒前
一堃完成签到,获得积分10
24秒前
勤劳糜发布了新的文献求助10
27秒前
jasmine发布了新的文献求助10
27秒前
Hh发布了新的文献求助10
27秒前
ceicic发布了新的文献求助10
28秒前
HEIKU应助XXG采纳,获得10
30秒前
32秒前
32秒前
bc应助科研通管家采纳,获得30
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
CipherSage应助lulu采纳,获得10
33秒前
34秒前
35秒前
活力的小猫咪完成签到 ,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784705
求助须知:如何正确求助?哪些是违规求助? 3329891
关于积分的说明 10243654
捐赠科研通 3045221
什么是DOI,文献DOI怎么找? 1671596
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416