已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hypergraph Learning for Unsupervised Graph Alignment via Optimal Transport

超图 图形 计算机科学 无监督学习 人工智能 理论计算机科学 数学 组合数学
作者
Yuguang Yan,Canlin Yang,Yuanlin Chen,Ruichu Cai,Michael K. Ng
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (20): 21913-21921
标识
DOI:10.1609/aaai.v39i20.35498
摘要

Unsupervised graph alignment aims to find corresponding nodes across different graphs without supervision. Existing methods usually leverage the graph structure to aggregate features of nodes to find relations between nodes. However, the graph structure is inherently limited in pairwise relations between nodes without considering higher-order dependencies among multiple nodes. In this paper, we take advantage of the hypergraph structure to characterize higher-order structural information among nodes for better graph alignment. Specifically, we propose an optimal transport model to learn a hypergraph to capture complex relations among nodes, so that the nodes involved in one hyperedge can be adaptively based on local geometric information. In addition, inspired by the Dirichlet energy function of a hypergraph, we further refine our model to enhance the consistency between structural and feature information in each hyperedge. After that, we jointly leverage graphs and hypergraphs to extract structural and feature information to better model the relations between nodes, which is used to find node correspondences across graphs. We conduct experiments on several benchmark datasets with different settings, and the results demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wq发布了新的文献求助10
1秒前
牛牛牛发布了新的文献求助10
2秒前
朴素懿轩完成签到,获得积分10
3秒前
孙誉文发布了新的文献求助10
3秒前
科研通AI6应助桔梗采纳,获得10
6秒前
墨薄凉完成签到 ,获得积分10
6秒前
6秒前
1234发布了新的文献求助30
7秒前
9秒前
科研通AI6应助Tom_and_jerry采纳,获得10
10秒前
Ivy完成签到,获得积分20
10秒前
Taxwitted应助糊涂的尔蝶采纳,获得10
10秒前
我是老大应助SCL987654321采纳,获得10
10秒前
月半月半白勺月半亻仑完成签到 ,获得积分10
12秒前
12秒前
14秒前
king完成签到 ,获得积分10
14秒前
bababiba完成签到,获得积分20
14秒前
善学以致用应助萦22采纳,获得10
15秒前
务实的冬寒完成签到 ,获得积分10
18秒前
大观天下发布了新的文献求助30
19秒前
mc应助SCL987654321采纳,获得10
20秒前
20秒前
21秒前
Binbin发布了新的文献求助30
24秒前
25秒前
天天快乐应助研友_Zlem38采纳,获得30
25秒前
25秒前
MM完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
羊羊完成签到,获得积分10
29秒前
小刘医生发布了新的文献求助10
30秒前
领导范儿应助生动夏青采纳,获得30
30秒前
乐风完成签到 ,获得积分10
30秒前
sciforce完成签到,获得积分10
30秒前
30秒前
robinhood完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141