ET‐WOFS Metaheuristic Feature Selection Based Approach for Endometrial Cancer Classification and Detection

人工智能 计算机科学 随机森林 支持向量机 规范化(社会学) 模式识别(心理学) 分类器(UML) 特征选择 分割 人类学 社会学
作者
Ramneek Kaur Brar,Manoj Sharma
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (4) 被引量:1
标识
DOI:10.1002/ima.70126
摘要

ABSTRACT Endometrial Cancer (EC), also referred to as endometrial carcinoma , stands as the most common category of carcinoma of the uterus in females, ranking as the sixth most common cancer worldwide among women. This study introduces a Machine Learning‐Based Efficient Computer‐Aided Diagnosis (ML‐CAD) state‐of‐the‐art model aimed at assisting healthcare professionals in investigating, estimating, and accurately classifying endometrial cancer through the meticulous analysis of H&E‐stained histopathological images. In the initial phase of image processing, meticulous steps are taken to eliminate noise from histopathological images. Subsequently, the application of the Vahadane stain normalization technique ensures stain normalization across histopathological images. The segmentation of stain‐normalized histopathological images is executed with precision using the k‐NN clustering approach, thereby enhancing the classification capabilities of the proposed ML‐CAD model. Shallow features and deep features are extracted for analysis. The integration of shallow and deep features is achieved through a middle‐level fusion strategy, and the SMOTE‐Edited Nearest Neighbor (SMOTE‐ENN) pre‐processing technique is applied to address the sample imbalance issue. The identification of optimal features from a heterogeneous feature dataset is conducted meticulously using the novel Extra Tree‐Whale Optimization Feature Selector (ET‐WOFS). For the subsequent classification of endometrial cancer, a repertoire of classifiers, including k‐NN, Random Forest, and Support Vector Machine (SVM), is harnessed. The classifier that incorporates ET‐WOFS features demonstrates exceptional classification outcomes. Compared with existing models, the outcomes demonstrate that a k‐NN classifier utilizing ET‐WOFS features showcases remarkable outcomes with a classification accuracy of 95.78%, precision of 96.77%, an impressively low false positive rate (FPR) of 1.40%, and also a minimal false negative rate (FNR) of 4.21%. Further validation of the model's prediction and classification performance is evaluated in terms of the AUC‐ROC value and other metrices. These presented assessments affirm the model's efficacy in providing accurate and reliable diagnostic support for endometrial cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CipherSage应助可靠的绮波采纳,获得10
2秒前
2秒前
被风吹过的夏天完成签到,获得积分10
3秒前
3秒前
学神发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI6应助甜甜友菱采纳,获得10
5秒前
壮观的寒松应助清爽语柳采纳,获得10
5秒前
标致荷花发布了新的文献求助10
5秒前
HUO发布了新的文献求助10
6秒前
6秒前
Rui豆豆发布了新的文献求助10
8秒前
嗝嗝发布了新的文献求助10
8秒前
一人独钓一江秋完成签到,获得积分10
10秒前
Joy完成签到,获得积分10
10秒前
超级幻梅发布了新的文献求助10
10秒前
坚定自信完成签到,获得积分10
11秒前
rose完成签到,获得积分10
12秒前
黎子建完成签到,获得积分10
12秒前
13秒前
今后应助小王采纳,获得10
13秒前
可靠的绮波完成签到,获得积分10
14秒前
14秒前
wanci应助littleE采纳,获得10
16秒前
16秒前
16秒前
搜集达人应助tomorrowstronger采纳,获得10
17秒前
18秒前
19秒前
HUO关闭了HUO文献求助
19秒前
19秒前
cocj发布了新的文献求助10
20秒前
天真的迎天完成签到,获得积分10
21秒前
YE发布了新的文献求助10
21秒前
田様应助sonia采纳,获得10
22秒前
华仔应助ppp采纳,获得10
22秒前
Hugh发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751776
求助须知:如何正确求助?哪些是违规求助? 4097076
关于积分的说明 12676346
捐赠科研通 3809730
什么是DOI,文献DOI怎么找? 2103383
邀请新用户注册赠送积分活动 1128550
关于科研通互助平台的介绍 1005521