Optimizing Initial Vancomycin Dosing in Hospitalized Patients Using Machine Learning Approach for Enhanced Therapeutic Outcomes: Algorithm Development and Validation Study

加药 万古霉素 医学 算法 治疗药物监测 支持向量机 接收机工作特性 回顾性队列研究 队列 机器学习 临床决策支持系统 药代动力学 人工智能 计算机科学 外科 内科学 决策支持系统 生物 细菌 遗传学 金黄色葡萄球菌
作者
Heonyi Lee,Yi‐Jun Kim,Jin‐Hong Kim,Soo‐Kyung Kim,Tae‐Dong Jeong
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e63983-e63983
标识
DOI:10.2196/63983
摘要

Background Vancomycin is commonly dosed using standard weight–based methods before dose adjustments are made through therapeutic drug monitoring (TDM). However, variability in initial dosing can lead to suboptimal therapeutic outcomes. A predictive model that personalizes initial dosing based on patient-specific pharmacokinetic factors prior to administration may enhance target attainment and minimize the need for subsequent dose adjustments. Objective This study aimed to develop and evaluate a machine learning (ML)–based algorithm to predict whether an initial vancomycin dose falls within the therapeutic range of the 24-hour area under the curve to minimum inhibitory concentration, thereby optimizing the initial vancomycin dosage. Methods A retrospective cohort study was conducted using hospitalized patients who received intravenous vancomycin and underwent pharmacokinetic TDM consultation (n=415). The cohort was randomly divided into training and testing datasets in a 7:3 ratio, and multiple ML techniques were used to develop an algorithm for optimizing initial vancomycin dosing. The optimal algorithm, referred to as the OPTIVAN algorithm, was selected and validated using an external cohort (n=268). We evaluated the performance of 4 ML models: gradient boosting machine, random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGB). Additionally, a web-based clinical support tool was developed to facilitate real-time vancomycin TDM application in clinical practice. Results The SVM algorithm demonstrated the best predictive performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.832 (95% CI 0.753-0.900) for the training dataset and 0.720 (95% CI 0.654-0.783) for the external validation dataset. The gradient boosting machine followed closely with AUROC scores of 0.802 (95% CI 0.667-0.857) for the training dataset and 0.689 (95% CI 0.596-0.733) for the validation dataset. In contrast, both XGB and RF exhibited relatively lower performance. XGB achieved AUROC values of 0.769 (95% CI 0.671-0.853) for the training set and 0.707 (95% CI 0.644-0.772) for the validation set, while RF recorded AUROC scores of 0.759 (95% CI 0.656-0.846) for the test dataset and 0.693 (95% CI 0.625-0.757) for the external validation set. The SVM model incorporated 7 covariates: age, BMI, glucose, blood urea nitrogen, estimated glomerular filtration rate, hematocrit, and daily dose per body weight. Subgroup analyses demonstrated consistent performance across different patient categories, such as renal function, sex, and BMI. A web-based TDM analysis tool was developed using the OPTIVAN algorithm. Conclusions The OPTIVAN algorithm represents a significant advancement in personalized initial vancomycin dosing, addressing the limitations of current TDM practices. By optimizing the initial dose, this algorithm may reduce the need for subsequent dosage adjustments. The algorithm’s web-based app is easy to use, making it a practical tool for clinicians. This study highlights the potential of ML to enhance the effectiveness of vancomycin treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助陆柏栎采纳,获得20
2秒前
3秒前
4秒前
张三发布了新的文献求助10
4秒前
4秒前
HMethod完成签到 ,获得积分10
6秒前
7秒前
凉薄少年应助圆仔采纳,获得10
8秒前
阿星捌发布了新的文献求助10
8秒前
rrrrr发布了新的文献求助10
10秒前
10秒前
MrZio发布了新的文献求助10
10秒前
14秒前
科研通AI5应助忽忽采纳,获得10
14秒前
15秒前
黑暗里看世界完成签到,获得积分10
19秒前
qxy完成签到 ,获得积分10
20秒前
凉薄少年应助Esty采纳,获得10
21秒前
甄茗完成签到 ,获得积分10
22秒前
25秒前
李健的小迷弟应助rune采纳,获得10
27秒前
29秒前
柔弱小之发布了新的文献求助10
29秒前
王兆烨发布了新的文献求助10
29秒前
qwp完成签到,获得积分10
31秒前
33秒前
za==发布了新的文献求助10
34秒前
陆柏栎给陆柏栎的求助进行了留言
36秒前
闹闹完成签到 ,获得积分20
37秒前
38秒前
better完成签到,获得积分10
39秒前
39秒前
40秒前
40秒前
40秒前
41秒前
44秒前
RUINNNO发布了新的文献求助10
45秒前
忽忽发布了新的文献求助10
45秒前
Wind发布了新的文献求助10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942937
求助须知:如何正确求助?哪些是违规求助? 3487978
关于积分的说明 11046370
捐赠科研通 3218630
什么是DOI,文献DOI怎么找? 1779021
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542