Optimizing Initial Vancomycin Dosing in Hospitalized Patients Using Machine Learning Approach for Enhanced Therapeutic Outcomes: Algorithm Development and Validation Study

加药 万古霉素 医学 算法 治疗药物监测 支持向量机 接收机工作特性 回顾性队列研究 队列 机器学习 临床决策支持系统 药代动力学 人工智能 计算机科学 外科 内科学 决策支持系统 生物 细菌 遗传学 金黄色葡萄球菌
作者
Heonyi Lee,Yi‐Jun Kim,Jin‐Hong Kim,Soo‐Kyung Kim,Tae‐Dong Jeong
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e63983-e63983 被引量:2
标识
DOI:10.2196/63983
摘要

Background Vancomycin is commonly dosed using standard weight–based methods before dose adjustments are made through therapeutic drug monitoring (TDM). However, variability in initial dosing can lead to suboptimal therapeutic outcomes. A predictive model that personalizes initial dosing based on patient-specific pharmacokinetic factors prior to administration may enhance target attainment and minimize the need for subsequent dose adjustments. Objective This study aimed to develop and evaluate a machine learning (ML)–based algorithm to predict whether an initial vancomycin dose falls within the therapeutic range of the 24-hour area under the curve to minimum inhibitory concentration, thereby optimizing the initial vancomycin dosage. Methods A retrospective cohort study was conducted using hospitalized patients who received intravenous vancomycin and underwent pharmacokinetic TDM consultation (n=415). The cohort was randomly divided into training and testing datasets in a 7:3 ratio, and multiple ML techniques were used to develop an algorithm for optimizing initial vancomycin dosing. The optimal algorithm, referred to as the OPTIVAN algorithm, was selected and validated using an external cohort (n=268). We evaluated the performance of 4 ML models: gradient boosting machine, random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGB). Additionally, a web-based clinical support tool was developed to facilitate real-time vancomycin TDM application in clinical practice. Results The SVM algorithm demonstrated the best predictive performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.832 (95% CI 0.753-0.900) for the training dataset and 0.720 (95% CI 0.654-0.783) for the external validation dataset. The gradient boosting machine followed closely with AUROC scores of 0.802 (95% CI 0.667-0.857) for the training dataset and 0.689 (95% CI 0.596-0.733) for the validation dataset. In contrast, both XGB and RF exhibited relatively lower performance. XGB achieved AUROC values of 0.769 (95% CI 0.671-0.853) for the training set and 0.707 (95% CI 0.644-0.772) for the validation set, while RF recorded AUROC scores of 0.759 (95% CI 0.656-0.846) for the test dataset and 0.693 (95% CI 0.625-0.757) for the external validation set. The SVM model incorporated 7 covariates: age, BMI, glucose, blood urea nitrogen, estimated glomerular filtration rate, hematocrit, and daily dose per body weight. Subgroup analyses demonstrated consistent performance across different patient categories, such as renal function, sex, and BMI. A web-based TDM analysis tool was developed using the OPTIVAN algorithm. Conclusions The OPTIVAN algorithm represents a significant advancement in personalized initial vancomycin dosing, addressing the limitations of current TDM practices. By optimizing the initial dose, this algorithm may reduce the need for subsequent dosage adjustments. The algorithm’s web-based app is easy to use, making it a practical tool for clinicians. This study highlights the potential of ML to enhance the effectiveness of vancomycin treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
3秒前
小鹿发布了新的文献求助10
4秒前
元谷雪应助李茵茵采纳,获得10
5秒前
5秒前
5秒前
nitsuj发布了新的文献求助10
6秒前
与鱼予雨发布了新的文献求助10
7秒前
残雪孤烛灭关注了科研通微信公众号
8秒前
量子星尘发布了新的文献求助10
9秒前
停停停关注了科研通微信公众号
10秒前
10秒前
13679165979完成签到,获得积分10
11秒前
充电宝应助谦让的靖巧采纳,获得10
11秒前
疯子不风完成签到,获得积分10
12秒前
13秒前
14秒前
深情安青应助明芬采纳,获得10
15秒前
lingluo完成签到,获得积分10
16秒前
Redback应助科研圣体采纳,获得30
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
HOAN应助小小旋风采纳,获得50
19秒前
qinqiny完成签到 ,获得积分0
20秒前
小二郎应助13679165979采纳,获得10
23秒前
科目三应助王王牛奶采纳,获得10
24秒前
ding应助干净山彤采纳,获得10
25秒前
思茶念酒完成签到 ,获得积分10
25秒前
填空完成签到 ,获得积分10
25秒前
寒冷代双发布了新的文献求助10
25秒前
27秒前
独白完成签到 ,获得积分10
27秒前
29秒前
Ting发布了新的文献求助10
30秒前
是晓宇啊完成签到,获得积分10
31秒前
王王牛奶完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675259
求助须知:如何正确求助?哪些是违规求助? 4944557
关于积分的说明 15152263
捐赠科研通 4834457
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543138
关于科研通互助平台的介绍 1501068