Optimized Predictive Modeling for Accurate Hardness Profiles in Hot-Rolled Alloy Steel Manufacturing Processes

合金 材料科学 冶金 合金钢 热轧
作者
Pratik C. Ghutke,Sharad Ramdas Gawade,Kumar Kishore,S. H. Mane
出处
期刊:Journal of Advanced Manufacturing Systems [World Scientific]
卷期号:: 1-18
标识
DOI:10.1142/s0219686726500344
摘要

The alloy steel’s Mechanical Properties (MPs) are most influenced by its composition of chemicals and the hot rolling process factors. However, modeling the interactions between these components is extremely difficult due to the rolling process’s complexity and dynamic nature as a nonlinear system. To overcome these challenges, this work introduces an advanced approach for optimizing predictive modeling in Hot-rolled Alloy Steel (HRAS) manufacturing, focusing on enhancing accuracy in hardness profiles and refining process parameters. The proposed approach utilizes the Temporal Dynamic Graph Neural Network (TDGNN), with the main objective of improving the mechanical characteristics of HRAS and enhancing accuracy and reliability. The TDGNN is employed to forecast the mechanical characteristics. The proposed method is implemented and compared with existing techniques on the MATLAB platform, including Physics-informed Neural Networks (PINNs), Deep Neural Networks (DNNs), and Convolutional Neural Networks (CNNs), demonstrating superior performance. The proposed TDGNN approach achieved a prediction accuracy of 97%, significantly outperforming existing methods such as CNN (71%), PINN (79%), and DNN (88%). It also recorded the lowest Mean Square Error (MSE) values for key MPs: 0.0003 for Tensile Strength (TS), 0.0002 for Yield Strength (YS), and 0.0003 for Elongation (EL), along with minimal Mean Absolute Errors (MAEs), confirming its superior prediction capability. The analysis further shows that the most frequent prediction errors for YS and EL fall within the range of −2% to 0%, indicating highly reliable forecasts with minimal underestimation. These results emphasize the notable performance improvements of the proposed method, reinforcing its ability to outperform conventional approaches in accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Angelica1021完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
3秒前
琉忆发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
Hello应助Yss采纳,获得10
5秒前
三三完成签到 ,获得积分0
6秒前
情怀应助没有昵称采纳,获得50
6秒前
不倦发布了新的文献求助10
6秒前
Paralyzed发布了新的文献求助20
7秒前
8秒前
8秒前
。。。发布了新的文献求助30
10秒前
eric888应助机灵柚子采纳,获得1500
10秒前
YI_JIA_YI完成签到,获得积分10
11秒前
11秒前
11秒前
周周发布了新的文献求助10
11秒前
杨wx发布了新的文献求助10
13秒前
13秒前
科研通AI6应助赵桃娟采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Dali完成签到,获得积分10
16秒前
管遥发布了新的文献求助10
16秒前
思源应助123采纳,获得10
18秒前
19秒前
聪明小羊发布了新的文献求助30
20秒前
才啊发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
zhoudada应助弄香采纳,获得10
21秒前
Ava应助管遥采纳,获得10
22秒前
22秒前
怡然凝云发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514941
求助须知:如何正确求助?哪些是违规求助? 4608528
关于积分的说明 14511850
捐赠科研通 4544647
什么是DOI,文献DOI怎么找? 2490176
邀请新用户注册赠送积分活动 1472085
关于科研通互助平台的介绍 1443840