Aramid Nanofiber/MXene-Reinforced Polyelectrolyte Hydrogels for Absorption-Dominated Electromagnetic Interference Shielding and Wearable Sensing

自愈水凝胶 电磁屏蔽 材料科学 电磁干扰 数码产品 电磁干扰 柔性电子器件 聚电解质 纳米技术 光电子学 电气工程 复合材料 聚合物 计算机科学 电信 工程类 高分子化学
作者
Jinglun Guo,Tianyi Zhang,Xiaoyu Hao,Shuaijie Liu,Yuxin Zou,Jinjin Li,Wei Wu,Liming Chen,Xuqing Liu
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:17 (1)
标识
DOI:10.1007/s40820-025-01791-4
摘要

Abstract Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics. Despite considerable advancements, current methodologies struggle to reconcile the fundamental trade-off between high conductivity and effective absorption-dominated electromagnetic interference (EMI) shielding, as dictated by classical impedance matching theory. This study addresses these limitations by introducing a novel synthesis of aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels. Leveraging the unique properties of polyelectrolytes, this innovative approach enhances ionic conductivity and exploits the hydration effect of hydrophilic polar groups to induce the formation of intermediate water. This critical innovation facilitates polarization relaxation and rearrangement in response to electromagnetic fields, thereby significantly enhancing the EMI shielding effectiveness of hydrogels. The electromagnetic wave attenuation capacity of these hydrogels was thoroughly evaluated across both X-band and terahertz band frequencies, with further investigation into the impact of varying water content states—hydrated, dried, and frozen—on their electromagnetic properties. Moreover, the hydrogels exhibited promising capabilities beyond mere EMI shielding; they also served effectively as strain sensors for monitoring human motions, indicating their potential applicability in wearable electronics. This work provides a new approach to designing multifunctional hydrogels, advancing the integration of flexible, multifunctional materials in modern electronics, with potential applications in both EMI shielding and wearable technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助asadguy采纳,获得10
刚刚
单于思雁完成签到,获得积分10
刚刚
jiabai发布了新的文献求助100
2秒前
顾矜应助ruqayyah采纳,获得10
2秒前
zl完成签到,获得积分20
2秒前
汉堡包应助yszyy23采纳,获得10
2秒前
小猛人发布了新的文献求助10
2秒前
李子完成签到,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
贪玩小小发布了新的文献求助10
3秒前
喜糯发布了新的文献求助10
4秒前
气945完成签到,获得积分10
4秒前
慕青应助机灵水卉采纳,获得10
5秒前
李健应助Jun采纳,获得10
5秒前
7秒前
7秒前
8秒前
bkagyin应助执着的飞瑶采纳,获得10
8秒前
8秒前
王珂完成签到 ,获得积分20
11秒前
Lucas应助ruby采纳,获得10
11秒前
12秒前
asadguy完成签到,获得积分10
13秒前
Blue发布了新的文献求助30
13秒前
王龙波发布了新的文献求助10
13秒前
ruqayyah完成签到,获得积分10
14秒前
14秒前
揽揽小高完成签到,获得积分10
15秒前
喜糯完成签到,获得积分10
15秒前
16秒前
乔乔汀发布了新的文献求助10
16秒前
18秒前
19秒前
南竹隐发布了新的文献求助10
19秒前
认真的代柔完成签到,获得积分10
19秒前
20秒前
大方大船完成签到,获得积分10
20秒前
Owen应助Joy采纳,获得20
22秒前
22秒前
22秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899060
求助须知:如何正确求助?哪些是违规求助? 3443710
关于积分的说明 10831106
捐赠科研通 3168334
什么是DOI,文献DOI怎么找? 1750568
邀请新用户注册赠送积分活动 846078
科研通“疑难数据库(出版商)”最低求助积分说明 789047