A deep ensemble learning approach for squamous cell classification in cervical cancer

宫颈癌 卷积神经网络 子宫颈 计算机科学 鳞状细胞癌 集成学习 癌症 阴道镜检查 人工智能 过程(计算) 集合预报 深度学习 机器学习 医学 内科学 操作系统
作者
Jayesh Gangrade,Rajit Kuthiala,Shweta Gangrade,Yadvendra Pratap Singh,Rohan Manoj,Surendra Solanki
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-91786-3
摘要

Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identifying potential cancerous alterations. While developed nations demonstrate commendable efficiency in Pap smear acquisition, the process remains laborious and time-intensive. Conversely, in less developed regions, there is a pressing need for streamlined, computer-aided methodologies for the pre-analysis and treatment of cervical cancer. This study focuses on the classification of squamous cells into five distinct classes, providing a nuanced assessment of cervical cancer severity. Utilizing a dataset comprising over 4096 images from SimpakMed, available on Kaggle, we employed ensemble technique which included the Convolutional Neural Network (CNN), AlexNet, and SqueezeNet for image classification, achieving accuracies of 90.8%, 92%, and 91% respectively. Particularly noteworthy is the proposed ensemble technique, which surpasses individual model performances, achieving an impressive accuracy of 94%. This ensemble approach underscores the efficacy of our method in precise squamous cell classification and, consequently, in gauging the severity of cervical cancer. The results represent a promising advancement in the development of more efficient diagnostic tools for cervical cancer in resource-constrained settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
shaoshao86完成签到,获得积分10
1秒前
Bao发布了新的文献求助10
2秒前
凡夕木叶发布了新的文献求助10
3秒前
CodeCraft应助叶强采纳,获得10
3秒前
Yuanyuan发布了新的文献求助10
5秒前
CC发布了新的文献求助10
5秒前
ZT发布了新的文献求助10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
摸鱼王完成签到,获得积分10
8秒前
凡夕木叶完成签到,获得积分10
10秒前
深情安青应助猪猪hero采纳,获得10
11秒前
lili发布了新的文献求助10
12秒前
binol发布了新的文献求助10
12秒前
七七完成签到 ,获得积分10
13秒前
16秒前
bkagyin应助皮崇知采纳,获得10
16秒前
猪猪hero发布了新的文献求助30
17秒前
Miao完成签到,获得积分10
18秒前
酷酷白萱发布了新的文献求助10
19秒前
完美世界应助cc采纳,获得10
20秒前
20秒前
1234完成签到,获得积分10
20秒前
英俊的铭应助lili采纳,获得10
22秒前
FLORA发布了新的文献求助10
23秒前
23秒前
文静千凡完成签到,获得积分10
26秒前
自觉的发夹完成签到,获得积分10
26秒前
aceman发布了新的文献求助10
26秒前
28秒前
研友_VZG7GZ应助小南采纳,获得10
29秒前
顾矜应助和谐的柠檬采纳,获得10
29秒前
Coffey完成签到 ,获得积分10
31秒前
31秒前
33秒前
SciGPT应助xhz采纳,获得10
34秒前
35秒前
liangeven发布了新的文献求助30
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844