Multiobjective whale optimization algorithm‐based feature selection for intelligent systems

计算机科学 特征选择 算法 适应度函数 分类器(UML) 领域(数学) 特征(语言学) 人工智能 选择(遗传算法) 数据挖掘 机器学习 遗传算法 数学 哲学 纯数学 语言学
作者
Milad Riyahi,Marjan Kuchaki Rafsanjani,Brij B. Gupta,Wadee Alhalabi
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 9037-9054 被引量:16
标识
DOI:10.1002/int.22979
摘要

With regard to large dimensions of contemporary data sets and restricted computational time of intelligent systems, reducing the dimensions of data sets is necessary. Feature selection is a practical way to remove a set of redundant, irrelevant, and noisy features. In this way, the speed of decision-making procedure will be increased while the accuracy of decisions will be retained. To this end, numerous attentions have been attracted to the topic and consequently, extensive range of methods has been proposed. Regarding the goals of the feature selection concept, the proposed algorithms in this field must be fast and accurate. Therefore, this paper proposes a light meanwhile accurate algorithm to fulfill the mentioned goals. The presented algorithm takes the speed advantage of Whale Optimization Algorithm (WOA) to propose a novel feature selection method for intelligent systems. Moreover, to reach the goal of accuracy, the proposed strategy considers three important fitness objectives, namely, the number of selected features, the accuracy of classification, and information gain. The proposed scheme considers an accurate multiobjective fitness function instead of manipulating the basic algorithm. The reason is that improving the basic algorithms, WOA in our case, may lead to loading more computational complexity. Also, to make the proposed algorithm as light as possible, this paper considers K-nearest neighbor algorithm as the main classifier. The proposed light feature selection algorithm is run on different data sets. Experimental results prove that this algorithm is able to reduce the number of features meanwhile it retains, and in some cases even increases, the accuracy of classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中觅夏完成签到 ,获得积分10
1秒前
chenc完成签到,获得积分10
1秒前
小夏完成签到,获得积分10
1秒前
英勇画板发布了新的文献求助10
1秒前
2秒前
afterly发布了新的文献求助10
2秒前
2秒前
2秒前
baobao发布了新的文献求助10
3秒前
快乐小狗发布了新的文献求助10
3秒前
深情安青应助缓慢听安采纳,获得10
4秒前
粉面菜蛋完成签到,获得积分10
4秒前
brd发布了新的文献求助10
4秒前
super chan完成签到,获得积分10
5秒前
zzy发布了新的文献求助10
5秒前
苏素发布了新的文献求助10
5秒前
木木应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
赵娣完成签到,获得积分10
6秒前
tramp应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
topsun完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
奔跑石小猛完成签到,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得30
7秒前
复杂鬼神发布了新的文献求助30
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792875
求助须知:如何正确求助?哪些是违规求助? 3337413
关于积分的说明 10285064
捐赠科研通 3054136
什么是DOI,文献DOI怎么找? 1675825
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561