A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification

初始化 渡线 计算机科学 特征选择 进化算法 操作员(生物学) 选择(遗传算法) 特征(语言学) 区间(图论) 比例(比率) 算法 人工智能 数学优化 模式识别(心理学) 数学 生物化学 组合数学 物理 语言学 哲学 抑制因子 化学 程序设计语言 基因 转录因子 量子力学
作者
Yu Xue,Xu Cai,Ferrante Neri
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:127: 109420-109420 被引量:110
标识
DOI:10.1016/j.asoc.2022.109420
摘要

Feature selection (FS) is an important data pre-processing technique in classification. In most cases, FS can improve classification accuracy and reduce feature dimension, so it can be regarded as a multi-objective optimization problem. Many evolutionary computation techniques have been applied to FS problems and achieved good results. However, an increase in data dimension means that search difficulty also greatly increases, and EC algorithms with insufficient search ability maybe only find sub-optimal solutions in high probability. Moreover, an improper initial population may negatively affect the convergence speed of algorithms. To solve the problems highlighted above, this paper proposes MOEA-ISa: a multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale FS. The proposed interval based initialization can limit the number of selected features for solution to improve the distribution of the initial population in the target space and reduce the similarity of the initial population in the decision space. The proposed self-adaptive crossover operator can determine the number of nonzero genes in offspring according to the similarity of parents, and it combines with the feature weights obtained by ReliefF method to improve the quality of offspring. In the experiments, the proposed algorithm was compared with six other algorithms on 13 benchmark UCI datasets and two benchmark LIBSVM datasets, and an ablation experiment was performed on MOEA-ISa. The results show that MOEA-ISa’s performance is better than the six other algorithms for solving large-scale FS problems, and the proposed interval based initialization and self-adaptive crossover operator can effectively improve the performance of MOEA-ISa. The source code of MOEA-ISa is available on GitHub at https://github.com/xueyunuist/MOEA-ISa . • We propose a multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator. • The proposed algorithm outperforms competitive methods for large-scale feature selection. • We perform ablation experiments to prove that the proposed interval based initialization and self-adaptive crossover operator are effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
pluto完成签到,获得积分0
4秒前
shihong_li完成签到 ,获得积分10
10秒前
11秒前
潇湘完成签到 ,获得积分10
11秒前
Mia完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
关中人完成签到,获得积分10
14秒前
九天完成签到 ,获得积分0
15秒前
温柔樱桃完成签到 ,获得积分10
16秒前
Joy完成签到,获得积分10
20秒前
虚幻小丸子完成签到 ,获得积分10
20秒前
东山完成签到,获得积分20
23秒前
舒心的紫雪完成签到 ,获得积分10
23秒前
笑对人生完成签到 ,获得积分10
26秒前
27秒前
有终完成签到 ,获得积分10
27秒前
taoyanhui完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
被教书耽误的主厨完成签到,获得积分10
32秒前
33秒前
奋斗的妙海完成签到 ,获得积分0
34秒前
梅特卡夫完成签到,获得积分10
35秒前
传奇3应助Affenyi采纳,获得10
35秒前
雷小牛完成签到 ,获得积分10
42秒前
天真醉波完成签到 ,获得积分10
42秒前
幽默的迎天完成签到,获得积分10
43秒前
jeffrey完成签到,获得积分0
43秒前
万默完成签到 ,获得积分10
45秒前
xiayiyi完成签到 ,获得积分10
45秒前
50秒前
lee完成签到 ,获得积分10
51秒前
sun完成签到,获得积分10
52秒前
walle发布了新的文献求助10
54秒前
无辜靖巧完成签到 ,获得积分10
55秒前
月下荷花完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
56秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389428
捐赠科研通 4512663
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432842