Drone-based investigation of natural restoration of vegetation in the water level fluctuation zone of cascade reservoirs in Jinsha River

环境科学 河岸带 水文学(农业) 植被(病理学) 水力发电 流域 自然地理学 生态学 地理 地质学 栖息地 医学 岩土工程 病理 生物 地图学
作者
Weiwei Jiang,Wentao Li,Junhu Zhou,Pengcheng Wang,Henglin Xiao
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:4
标识
DOI:10.1038/s41598-022-14578-z
摘要

The reservoir water level fluctuation zone (WLFZ) is a new and fragile ecosystem that is gaining attention with the construction of large and medium-sized hydropower plants. Compared to the natural riparian zone, it has a greater drop in water level, longer inundation time, more intense impact from alternating wet and dry conditions, and a wider impact on ecological security. The Jinsha River basin is located in the upper reaches of the Yangtze River in China, and several world-class large-scale hydropower projects with dam heights over 100 m have been built, forming a large area of reservoir WLFZ, however, due to the short time since their construction, there are few related studies. In this paper, fixed sample plots were set up in the typical WLFZs of each large reservoir in the Jinsha River basin. In response to the problem of the precipitous terrain and poor accessibility of the Jinsha River basin, a combination of small UAV surveys and field research in July 2020 was used to draw vegetation cover maps and extract topographic data for each site, and quantitatively analyse the community composition, dominant species types, area, coverage, spatial distribution patterns and environmental factors of tolerant vegetation using spatial superposition analysis, neural network models, landscape pattern indices and typical correlation analysis. The results showed that the original drought-tolerant vegetation in the arid river valley WLFZ has evolved into amphibious herbaceous vegetation, with trees and shrubs disappearing and species composition tending to be simpler. 44 species of plants, mainly in the Asteraceae and Gramineae families, were extant, 61% of which were also reported in the Three Gorges Reservoir WLFZ. The water level variation showed convergence in the natural screening process of suitable species in the WLFZ. Moreover, even in the dry valley WLFZs, flood stress showed a more significant filtering effect on vegetation species than drought stress. The vegetation in the WLFZ showed an obvious band-like aggregated distribution along the water level elevation gradient, and the vegetation coverage along the flooding gradient is as follows: upper part of the WLFZ >> middle part > lower part, and mainly concentrated in the gentle area with slope less than 35°. Flooding stress, drought stress and soil substrate deficiency were the main limiting factors for vegetation recovery in the WLFZ. The vegetation restoration of the WLFZ should be adapted to local conditions, and the dominant role of native species should be emphasized. At the early stage of the restoration of the WLFZ, native species should be selected for artificial planting to accelerate the formation of vegetation cover, and gradually advance downwards along the gradient of water level elevation, while for areas of the WLFZ with slopes greater than 35° and large topographic relief, biological engineering measures should be used to help plant establishment, and after a certain stable cover has been formed, natural restoration should be the main focus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
struggling完成签到,获得积分10
1秒前
无辜玉米完成签到,获得积分10
1秒前
上官若男应助yu采纳,获得10
2秒前
Ava应助眯眯眼的灭龙采纳,获得10
2秒前
羊羊羊发布了新的文献求助10
2秒前
Lee发布了新的文献求助10
2秒前
yaoyao完成签到,获得积分10
3秒前
momo发布了新的文献求助10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
hi应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
YamDaamCaa举报谦让大雁求助涉嫌违规
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
ZZL应助科研通管家采纳,获得20
5秒前
YI应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
甜美无剑应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Molecular and therapeutic landscape of non-clear cell renal carcinoma 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964117
求助须知:如何正确求助?哪些是违规求助? 3509929
关于积分的说明 11149847
捐赠科研通 3243836
什么是DOI,文献DOI怎么找? 1792192
邀请新用户注册赠送积分活动 873651
科研通“疑难数据库(出版商)”最低求助积分说明 803852