亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of datasets and methods for deriving spatiotemporal distributions of atmospheric CO2

卫星 环境科学 比例(比率) 遥感 仪表(计算机编程) 计算机科学 插值(计算机图形学) 温室气体 气象学 地理 人工智能 生态学 地图学 航空航天工程 工程类 生物 操作系统 运动(物理)
作者
Changpei He,Mingrui Ji,Michael L. Grieneisen,Yu Zhan
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:322: 116101-116101 被引量:35
标识
DOI:10.1016/j.jenvman.2022.116101
摘要

As the most abundant greenhouse gas, atmospheric carbon dioxide (CO2) is considered one of the main attributors to climate change. Atmospheric CO2 concentrations can be measured by ground-based monitoring networks, mobile monitoring campaigns, and carbon-observing satellites. However, the worldwide ground-based monitoring networks are composed of sparsely distributed sites and are inadequate to represent the spatiotemporal distributions of CO2. Satellite-based remote sensing features repeated, long-term, and large-scale measurements, so it plays a crucial role in monitoring the global distributions of atmospheric CO2. However, due to the presence of heavy clouds (or aerosols) and the limitation of satellite orbiting tracks, there exist large amounts of missing data in satellite retrievals. Various methods, including chemical transport models (CTMs), geostatistical methods, and regression-based models, have been employed to derive full-coverage spatiotemporal distributions of CO2 based on the limited CO2 measurements. This review summarizes the strengths and limitations of these methods. However, CTMs simulation results can have high uncertainty due to imperfect knowledge of the real world, and the interpolation accuracy of all geostatistical methods is limited by the large amount of data gaps in current satellite retrieved CO2 products. To overcome these limitations, regression-based methods (especially machine learning models) have the ability to predict CO2 with superior predictive performance, so this review also summarizes the framework of the machine learning approach. Leveraging the ongoing advancements of satellite instrumentation, the satellite-based CO2 products have been improving dramatically in recent decades, and this review will describe and critically assess the advantages and disadvantages of the currently used systems in detail. For future improvements, we recommend the fusion of data from multiple satellite retrievals and CTMs by using machine learning algorithms in order to obtain even longer-term, larger-scale, finer-resolution, and higher-accuracy CO2 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
12秒前
嘻嘻哈哈应助科研通管家采纳,获得10
12秒前
17秒前
FJXTY发布了新的文献求助10
20秒前
热情依白完成签到 ,获得积分10
22秒前
30秒前
FJXTY完成签到,获得积分10
30秒前
32秒前
35秒前
yihuifa发布了新的文献求助10
40秒前
46秒前
1分钟前
slz发布了新的文献求助10
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
Proxac完成签到,获得积分10
2分钟前
Proxac发布了新的文献求助20
2分钟前
2分钟前
科研通AI6应助evermore采纳,获得10
2分钟前
2分钟前
清风朗月发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
大模型应助迅速的岩采纳,获得10
3分钟前
3分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
4分钟前
evermore发布了新的文献求助10
4分钟前
符寄云发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553