Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study

医学 中心(范畴论) 回顾性队列研究 肝移植 移植 外科 结晶学 化学
作者
Young‐Dong Yu,Kwang‐Sig Lee,Jong Man Kim,Je Ho Ryu,Jae Geun Lee,Kwang‐Woong Lee,Bong‐Wan Kim,Dong‐Sik Kim
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:105: 106838-106838 被引量:21
标识
DOI:10.1016/j.ijsu.2022.106838
摘要

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
black_cavalry完成签到,获得积分10
刚刚
薛同学完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
含糊的万恶完成签到,获得积分10
2秒前
zhimajiang完成签到 ,获得积分10
3秒前
田様应助cccc采纳,获得10
3秒前
5秒前
5秒前
jjn发布了新的文献求助10
5秒前
小伙子发布了新的文献求助10
6秒前
6秒前
传奇3应助可乐可不乐采纳,获得10
6秒前
追寻的怜容完成签到,获得积分10
7秒前
7秒前
小二郎应助LIU230907采纳,获得10
7秒前
薛同学发布了新的文献求助10
7秒前
GGYY1234发布了新的文献求助10
8秒前
大海给大海的求助进行了留言
8秒前
网易乐完成签到,获得积分10
9秒前
9秒前
10秒前
六等于三二一完成签到 ,获得积分10
10秒前
凤梨罐头发布了新的文献求助10
10秒前
10秒前
云腾致雨发布了新的文献求助10
10秒前
11秒前
在水一方应助littlewhite采纳,获得10
11秒前
踏实万恶发布了新的文献求助10
12秒前
Lyncus完成签到,获得积分0
12秒前
jj完成签到,获得积分10
13秒前
jiajiajai完成签到,获得积分10
15秒前
斗罗大陆发布了新的文献求助10
15秒前
15秒前
jj发布了新的文献求助10
16秒前
桐桐应助ybheart采纳,获得10
16秒前
17秒前
SciGPT应助过过采纳,获得10
17秒前
JamesPei应助t通采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916010
求助须知:如何正确求助?哪些是违规求助? 3461580
关于积分的说明 10917761
捐赠科研通 3188442
什么是DOI,文献DOI怎么找? 1762662
邀请新用户注册赠送积分活动 852929
科研通“疑难数据库(出版商)”最低求助积分说明 793613