A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in $$[^{18}$$F]FDG PET/CT

淋巴结 卷积神经网络 核医学 概化理论 医学 人工智能 原发性肿瘤 正电子发射断层摄影术 计算机科学 放射科 癌症 转移 病理 数学 内科学 统计
作者
Pavel Nikulin,Sebastian Zschaeck,Jens Maus,Paulina Cegła,Elia Lombardo,Christian Furth,Joanna Kaźmierska,Julian M.M. Rogasch,Adrien Holzgreve,Nathalie L. Albert,Konstantinos Ferentinos,Iosif Strouthos,Marina Hajiyianni,Sebastian Marschner,Claus Belka,Guillaume Landry,Witold Cholewiński,Jörg Kotzerke,Frank Hofheinz,Jörg van den Hoff
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (9): 2751-2766 被引量:8
标识
DOI:10.1007/s00259-023-06197-1
摘要

PET-derived metabolic tumor volume (MTV) and total lesion glycolysis of the primary tumor are known to be prognostic of clinical outcome in head and neck cancer (HNC). Including evaluation of lymph node metastases can further increase the prognostic value of PET but accurate manual delineation and classification of all lesions is time-consuming and prone to interobserver variability. Our goal, therefore, was development and evaluation of an automated tool for MTV delineation/classification of primary tumor and lymph node metastases in PET/CT investigations of HNC patients.Automated lesion delineation was performed with a residual 3D U-Net convolutional neural network (CNN) incorporating a multi-head self-attention block. 698 [Formula: see text]F]FDG PET/CT scans from 3 different sites and 5 public databases were used for network training and testing. An external dataset of 181 [Formula: see text]F]FDG PET/CT scans from 2 additional sites was employed to assess the generalizability of the network. In these data, primary tumor and lymph node (LN) metastases were interactively delineated and labeled by two experienced physicians. Performance of the trained network models was assessed by 5-fold cross-validation in the main dataset and by pooling results from the 5 developed models in the external dataset. The Dice similarity coefficient (DSC) for individual delineation tasks and the primary tumor/metastasis classification accuracy were used as evaluation metrics. Additionally, a survival analysis using univariate Cox regression was performed comparing achieved group separation for manual and automated delineation, respectively.In the cross-validation experiment, delineation of all malignant lesions with the trained U-Net models achieves DSC of 0.885, 0.805, and 0.870 for primary tumor, LN metastases, and the union of both, respectively. In external testing, the DSC reaches 0.850, 0.724, and 0.823 for primary tumor, LN metastases, and the union of both, respectively. The voxel classification accuracy was 98.0% and 97.9% in cross-validation and external data, respectively. Univariate Cox analysis in the cross-validation and the external testing reveals that manually and automatically derived total MTVs are both highly prognostic with respect to overall survival, yielding essentially identical hazard ratios (HR) ([Formula: see text]; [Formula: see text] vs. [Formula: see text]; [Formula: see text] in cross-validation and [Formula: see text]; [Formula: see text] vs. [Formula: see text]; [Formula: see text] in external testing).To the best of our knowledge, this work presents the first CNN model for successful MTV delineation and lesion classification in HNC. In the vast majority of patients, the network performs satisfactory delineation and classification of primary tumor and lymph node metastases and only rarely requires more than minimal manual correction. It is thus able to massively facilitate study data evaluation in large patient groups and also does have clear potential for supervised clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的保温杯完成签到 ,获得积分10
5秒前
Jasper应助devilito采纳,获得10
6秒前
领导范儿应助芯子采纳,获得10
6秒前
zyc1111111完成签到,获得积分10
7秒前
七七八八发布了新的文献求助10
7秒前
12秒前
丘比特应助曲幻梅采纳,获得10
15秒前
赘婿应助野椒搞科研采纳,获得30
15秒前
15秒前
三胖完成签到,获得积分10
18秒前
朱华彪完成签到,获得积分10
18秒前
完美世界应助xueying6767采纳,获得10
20秒前
23333发布了新的文献求助10
20秒前
长江完成签到 ,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
冰魂应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
兴奋书雪完成签到,获得积分10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得50
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
斯文败类应助科研通管家采纳,获得10
24秒前
24秒前
充电宝应助科研通管家采纳,获得30
24秒前
所所应助科研通管家采纳,获得10
24秒前
23333完成签到,获得积分10
24秒前
芯子发布了新的文献求助10
27秒前
桌球有点蔡先生完成签到 ,获得积分10
29秒前
32秒前
33秒前
今天你看文献了吗完成签到 ,获得积分10
34秒前
34秒前
ss应助muriel采纳,获得10
37秒前
38秒前
曲幻梅发布了新的文献求助10
38秒前
devilito发布了新的文献求助10
39秒前
40秒前
LZQ发布了新的文献求助10
41秒前
kai发布了新的文献求助10
43秒前
芯子完成签到 ,获得积分20
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415