Optimizing the electrochemical performance of LiCoO2 at 4.5 V via synergistic modification of Mg2+ ion doping and Li1.3La0.3Ti1.7(PO4)3 coating

电化学 兴奋剂 涂层 离子 材料科学 表面改性 化学工程 无机化学 纳米技术 化学 电极 光电子学 物理化学 有机化学 工程类
作者
Gaoqiang Mao,Jing Lü,Haiyan Cai,Wanjing Yu,Hui Tong,Xueyi Guo,Leiying Zeng,Long Jiang
出处
期刊:Advanced composites and hybrid materials [Springer Nature]
卷期号:8 (4) 被引量:1
标识
DOI:10.1007/s42114-025-01373-3
摘要

Abstract Increasing the operating voltage can significantly increase the energy density of LiCoO 2 , but it is accompanied by severe structural damage and interface degradation. Especially at a high voltage above 4.5 V, LiCoO 2 faces severe challenges, such as irreversible phase transition, lattice oxygen loss, and electrode–electrolyte interface evolution. Herein, a high-voltage LiCoO 2 cathode material with bulk doping and surface coating synergistic modification was designed and prepared. The doped Mg 2+ ions entered the lithium layers as pillars, stabilizing the layered framework. Meanwhile, Li 1.3 La 0.3 Ti 1.7 (PO 4 ) 3 was uniformly coated on the surface of LiCoO 2 , which is beneficial for suppressing Co 3+/2+ ion leaching and interface side reactions during cycling. Furthermore, Li 1.3 La 0.3 Ti 1.7 (PO 4 ) 3 is a fast ion conductor, which facilitates the rapid transport of lithium ions on the surface of the cathode material. Owing to the synergistic effect of Mg 2+ ion doping and Li 1.3 La 0.3 Ti 1.7 (PO 4 ) 3 coating, the orbitals of Co 3d and O 2p in LiCoO 2 crystal are changed, and the irreversible phase transition and oxygen loss are inhibited. The modified material exhibited an excellent electrochemical performance. A discharge capacity of 175.5 mAh·g −1 at 10 C rate, as well as a capacity retention of 90.14% after 200 cycles at 1 C rate, was achieved in the modified material. This work supplies a new method for developing high-voltage oxide cathodes through bulk and interfacial modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚幻的不愁完成签到,获得积分10
1秒前
1秒前
MQL完成签到,获得积分10
2秒前
2秒前
2秒前
myn1990完成签到,获得积分10
2秒前
爱吃菠萝蜜完成签到,获得积分10
2秒前
王王完成签到,获得积分10
3秒前
4秒前
科研废柴完成签到,获得积分10
4秒前
zzl完成签到,获得积分10
5秒前
5秒前
余香肉丝发布了新的文献求助10
5秒前
zloosur完成签到,获得积分10
6秒前
高大的羿完成签到,获得积分10
6秒前
7秒前
欢欢发布了新的文献求助10
7秒前
无花果应助ctttt采纳,获得10
7秒前
彭于晏应助苹果绿采纳,获得10
7秒前
Hello应助哭泣的书兰采纳,获得10
8秒前
蓝天应助滑腻腻的小鱼采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
chen完成签到,获得积分20
9秒前
9秒前
思源应助sky采纳,获得10
10秒前
10秒前
九bai发布了新的文献求助10
10秒前
xuxugogo完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
现代小丸子完成签到 ,获得积分10
12秒前
fff完成签到,获得积分10
12秒前
12秒前
12秒前
精明寒松发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210