MDPNet: Multiscale Dynamic Polyp-focus Network for Enhancing Medical Image Polyp Segmentation

光学(聚焦) 图像分割 人工智能 计算机科学 计算机视觉 图像(数学) 分割 医学影像学 模式识别(心理学) 物理 光学
作者
A. Kamara,Shiwen He,Abdul Joseph Fofanah,Rong Xu,Yuehan Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3588503
摘要

Colorectal cancer (CRC) is the most common malignant neoplasm in the digestive system and a primary cause of cancer-related mortality in the United States, exceeded only by lung and prostate cancers. The American Cancer Society estimates that in 2024, there will be approximately 152,810 new cases of colorectal cancer and 53,010 deaths in the United States, highlighting the critical need for early diagnosis and prevention. Precise polyp segmentation is crucial for early detection, as it improves treatability and survival rates. However, existing methods, such as the UNet architecture, struggle to capture long-range dependencies and manage the variability in polyp shapes and sizes, and the low contrast between polyps and the surrounding background. We propose a multiscale dynamic polyp-focus network (MDPNet) to solve these problems. It has three modules: dynamic polyp-focus (DPfocus), non-local multiscale attention pooling (NMAP), and learnable multiscale attention pooling (LMAP). DPfocus captures global pixel-to-polyp dependencies, preserving high-level semantics and emphasizing polyp-specific regions. NMAP stabilizes the model under varying polyp shapes, sizes, and contrasts by dynamically aggregating multiscale features with minimal data loss. LMAP enhances spatial representation by learning multiscale attention across different regions. This enables MDPNet to understand long-range dependencies and combine information from different levels of context, boosting the segmentation accuracy. Extensive experiments on four publicly available datasets demonstrate that MDPNet is effective and outperforms current state-of-the-art segmentation methods by 2-5% in overall accuracy across all datasets. This demonstrates that our method improves polyp segmentation accuracy, aiding early detection and treatment of colorectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5km完成签到,获得积分10
刚刚
刘娇娇完成签到,获得积分10
1秒前
柠檬西米露完成签到,获得积分10
1秒前
Jasmineyfz完成签到 ,获得积分10
1秒前
守望阳光1完成签到,获得积分10
1秒前
超级无敌奥特大王完成签到,获得积分10
1秒前
朴素剑心完成签到,获得积分10
2秒前
K珑完成签到,获得积分10
3秒前
冷傲迎梦发布了新的文献求助10
3秒前
4秒前
4秒前
ENG完成签到,获得积分10
4秒前
longmad完成签到,获得积分10
4秒前
小羊完成签到 ,获得积分10
5秒前
或无情完成签到,获得积分10
5秒前
wang完成签到,获得积分10
5秒前
风趣霆完成签到,获得积分10
5秒前
6秒前
7秒前
快乐慕灵完成签到,获得积分10
7秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
10秒前
Chloe完成签到,获得积分10
11秒前
ray发布了新的文献求助10
11秒前
12秒前
曾经新波发布了新的文献求助30
13秒前
louiselong完成签到,获得积分10
13秒前
polaris完成签到 ,获得积分10
14秒前
寒水完成签到 ,获得积分10
14秒前
科研通AI2S应助cccccc采纳,获得10
15秒前
ll完成签到,获得积分10
15秒前
春儿完成签到,获得积分10
16秒前
leinuo077完成签到,获得积分10
16秒前
自觉南风完成签到,获得积分10
16秒前
16秒前
schoolstudyboy完成签到,获得积分10
16秒前
恬恬发布了新的文献求助10
17秒前
酷炫的不二完成签到,获得积分20
17秒前
明亮寻绿发布了新的文献求助10
18秒前
Kay76完成签到,获得积分10
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061515
求助须知:如何正确求助?哪些是违规求助? 3600158
关于积分的说明 11432704
捐赠科研通 3323775
什么是DOI,文献DOI怎么找? 1827457
邀请新用户注册赠送积分活动 897931
科研通“疑难数据库(出版商)”最低求助积分说明 818762