MDPNet: Multiscale Dynamic Polyp-Focus Network for Enhancing Medical Image Polyp Segmentation

光学(聚焦) 图像分割 人工智能 计算机科学 计算机视觉 图像(数学) 分割 医学影像学 模式识别(心理学) 物理 光学
作者
Alpha Alimamy Kamara,Shiwen He,Abdul Joseph Fofanah,Rong Xu,Yuehan Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 5208-5220 被引量:1
标识
DOI:10.1109/tmi.2025.3588503
摘要

Colorectal cancer (CRC) is the most common malignant neoplasm in the digestive system and a primary cause of cancer-related mortality in the United States, exceeded only by lung and prostate cancers. The American Cancer Society estimates that in 2024, there will be approximately 152,810 new cases of colorectal cancer and 53,010 deaths in the United States, highlighting the critical need for early diagnosis and prevention. Precise polyp segmentation is crucial for early detection, as it improves treatability and survival rates. However, existing methods, such as the UNet architecture, struggle to capture long-range dependencies and manage the variability in polyp shapes and sizes, and the low contrast between polyps and the surrounding background. We propose a multiscale dynamic polyp-focus network (MDPNet) to solve these problems. It has three modules: dynamic polyp-focus (DPfocus), non-local multiscale attention pooling (NMAP), and learnable multiscale attention pooling (LMAP). DPfocus captures global pixel-to-polyp dependencies, preserving high-level semantics and emphasizing polyp-specific regions. NMAP stabilizes the model under varying polyp shapes, sizes, and contrasts by dynamically aggregating multiscale features with minimal data loss. LMAP enhances spatial representation by learning multiscale attention across different regions. This enables MDPNet to understand long-range dependencies and combine information from different levels of context, boosting the segmentation accuracy. Extensive experiments on four publicly available datasets demonstrate that MDPNet is effective and outperforms current state-of-the-art segmentation methods by 2-5% in overall accuracy across all datasets. This demonstrates that our method improves polyp segmentation accuracy, aiding early detection and treatment of colorectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
彭于晏应助LIZ采纳,获得30
3秒前
3秒前
予秋发布了新的文献求助10
3秒前
3秒前
4秒前
xxxx完成签到,获得积分10
4秒前
4秒前
5秒前
After应助缥缈的忆山采纳,获得10
5秒前
Gina发布了新的文献求助10
5秒前
碱性染料发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
悦耳安白发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
imricc完成签到 ,获得积分10
7秒前
Jenny发布了新的文献求助10
7秒前
田様应助784273145采纳,获得30
8秒前
10秒前
加油干完成签到,获得积分10
10秒前
10秒前
11111111发布了新的文献求助10
12秒前
12秒前
左丘世立完成签到,获得积分10
13秒前
13秒前
所所应助小栋采纳,获得10
13秒前
Jenny完成签到,获得积分20
13秒前
orixero应助淡淡土豆采纳,获得10
14秒前
14秒前
007完成签到,获得积分10
15秒前
15秒前
糖须臾完成签到,获得积分10
16秒前
Zetlynn完成签到,获得积分10
16秒前
前进四完成签到,获得积分10
17秒前
784273145完成签到,获得积分20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777921
求助须知:如何正确求助?哪些是违规求助? 5636658
关于积分的说明 15447224
捐赠科研通 4909858
什么是DOI,文献DOI怎么找? 2641972
邀请新用户注册赠送积分活动 1589855
关于科研通互助平台的介绍 1544362