Distribution matching with subset‐k‐space embedding for multi‐contrast MRI reconstruction

匹配(统计) 对比度(视觉) 分布(数学) 嵌入 医学影像学 迭代重建 空格(标点符号) 人工智能 数学 模式识别(心理学) 计算机科学 计算机视觉 数学分析 统计 操作系统
作者
Yu Guan,Yujuan Lü,Jing Cheng,Hongjiang Wei,Shanshan Wang,Qiegen Liu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8): e18056-e18056
标识
DOI:10.1002/mp.18056
摘要

Abstract Background Diagnostics often require multi‐contrast magnetic resonance images (MC‐MRI) to visualize various anatomical features. Nevertheless, equipment constraints and imaging protocols render the acquired multi‐contrast image vulnerable to motion artifacts due to the long acquisition time. To reduce the time required for multiple acquisitions in MC‐MRI, recent research has focused on collecting partial k ‐space data from a single contrast to reconstruct high‐quality images by leveraging the redundancy among different contrasts. Further exploiting relevant information across diverse contrasts presents a more effective solution for accurate reconstruction. Purpose To enhance reconstruction accuracy, this work aims to develop a novel reconstruction method that integrates the advantages of subset‐ k ‐space distribution prior and high‐dimensional global prior for MC‐MRI reconstruction. Methods Specifically, the first stage involves the individual decomposition of k ‐space data from different guided contrasts, which are then combined with the measurements to construct a new subset‐ k ‐space. Notably, establishing this subset‐ k ‐space minimizes the distance between the distribution of the measurements and the target examples. In addition to capitalizing on the novel distribution matching strategy for improved sampling, the second stage incorporates global prior embedding to constrain the diffusion model within the high‐dimensional space, using the reconstructed contrast itself as a reference. This global prior refines the initial reconstruction obtained in the first stage. Results Empirical evaluations across various datasets compellingly demonstrate the excellent capability of DMSE to preserve details and achieve accurate reconstruction. Conclusion The proposed DMSE model for MC‐MRI reconstruction integrates a subset‐ k ‐space distribution prior and a high‐dimensional global prior to guide the reconstruction process. By leveraging supplementary information from guidance contrasts and constrained information from the under‐sampled data itself, DMSE significantly reduces noise and aliasing artifacts. Comparative and ablation experiments demonstrate that this method outperforms existing approaches in both quantitative and qualitative evaluations, achieving comparable reconstruction fidelity across different sampling conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕山完成签到 ,获得积分10
1秒前
张小小发布了新的文献求助10
11秒前
科研通AI6应助Promise采纳,获得30
12秒前
14秒前
疑夕完成签到,获得积分10
15秒前
纹银完成签到,获得积分10
16秒前
福崽发布了新的文献求助10
17秒前
一行白鹭上青天完成签到 ,获得积分10
18秒前
知行完成签到,获得积分10
18秒前
漏脑之鱼完成签到 ,获得积分10
19秒前
zxy发布了新的文献求助10
19秒前
DengJJJ完成签到,获得积分10
21秒前
慕青应助wwww威采纳,获得10
21秒前
欣喜的向日葵完成签到,获得积分10
23秒前
易水寒完成签到 ,获得积分10
26秒前
27秒前
Lucas应助muyassar采纳,获得10
27秒前
苹果冰蓝完成签到,获得积分10
31秒前
GGGrigor完成签到,获得积分10
32秒前
聪明伊完成签到,获得积分10
32秒前
森森发布了新的文献求助10
32秒前
自信雅琴完成签到,获得积分20
34秒前
35秒前
tom完成签到,获得积分10
37秒前
NexusExplorer应助浏阳河采纳,获得10
37秒前
38秒前
39秒前
39秒前
40秒前
muyassar发布了新的文献求助10
41秒前
生物科研小白完成签到 ,获得积分10
41秒前
爆米花应助8y24dp采纳,获得10
41秒前
wwww威发布了新的文献求助10
43秒前
43秒前
44秒前
fulu发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
45秒前
橙子应助白野凛采纳,获得50
45秒前
Murphy发布了新的文献求助10
45秒前
vv发布了新的文献求助10
46秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130587
求助须知:如何正确求助?哪些是违规求助? 4332661
关于积分的说明 13498206
捐赠科研通 4169176
什么是DOI,文献DOI怎么找? 2285532
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227443