Graph Network-Based Simulation of Multicellular Dynamics Driven by Concentrated Polymer Brush-Modified Cellulose Nanofibers

纳米纤维 纤维素 多细胞生物 生物系统 材料科学 计算机科学 聚合物 过程(计算) 图形 刷子 纳米技术 人工智能 复合材料 细胞 化学工程 化学 理论计算机科学 工程类 生物 操作系统 生物化学
作者
Chiaki Yoshikawa,Đức Anh Nguyễn,Tadashi Nakaji‐Hirabayashi,Ichigaku Takigawa,Hiroshi Mamitsuka
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:10 (4): 2165-2176
标识
DOI:10.1021/acsbiomaterials.3c01888
摘要

Manipulating the three-dimensional (3D) structures of cells is important for facilitating to repair or regenerate tissues. A self-assembly system of cells with cellulose nanofibers (CNFs) and concentrated polymer brushes (CPBs) has been developed to fabricate various cell 3D structures. To further generate tissues at an implantable level, it is necessary to carry out a large number of experiments using different cell culture conditions and material properties; however this is practically intractable. To address this issue, we present a graph-neural network-based simulator (GNS) that can be trained by using assembly process images to predict the assembly status of future time steps. A total of 24 (25 steps) time-series images were recorded (four repeats for each of six different conditions), and each image was transformed into a graph by regarding the cells as nodes and the connecting neighboring cells as edges. Using the obtained data, the performances of the GNS were examined under three scenarios (i.e., changing a pair of the training and testing data) to verify the possibility of using the GNS as a predictor for further time steps. It was confirmed that the GNS could reasonably reproduce the assembly process, even under the toughest scenario, in which the experimental conditions differed between the training and testing data. Practically, this means that the GNS trained by the first 24 h images could predict the cell types obtained 3 weeks later. This result could reduce the number of experiments required to find the optimal conditions for generating cells with desired 3D structures. Ultimately, our approach could accelerate progress in regenerative medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助IanZ采纳,获得30
2秒前
科研通AI6应助nmeiko采纳,获得10
4秒前
山屿发布了新的文献求助30
5秒前
BUlKY完成签到 ,获得积分10
11秒前
bobo完成签到,获得积分10
13秒前
兰宁完成签到,获得积分10
16秒前
16秒前
zhuzhu完成签到,获得积分10
23秒前
25秒前
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
Mic应助科研通管家采纳,获得30
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
Mic应助科研通管家采纳,获得30
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
11235应助科研通管家采纳,获得10
30秒前
30秒前
大个应助科研通管家采纳,获得10
30秒前
wq应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得50
30秒前
CR7应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得50
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550