Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection

假新闻 计算机科学 心理学 互联网隐私 数据科学 社会学
作者
Beizhe Hu,Qiang Sheng,Juan Cao,Yuhui Shi,Yang Li,Danding Wang,Peng Qi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (20): 22105-22113 被引量:49
标识
DOI:10.1609/aaai.v38i20.30214
摘要

Detecting fake news requires both a delicate sense of diverse clues and a profound understanding of the real-world background, which remains challenging for detectors based on small language models (SLMs) due to their knowledge and capability limitations. Recent advances in large language models (LLMs) have shown remarkable performance in various tasks, but whether and how LLMs could help with fake news detection remains underexplored. In this paper, we investigate the potential of LLMs in fake news detection. First, we conduct an empirical study and find that a sophisticated LLM such as GPT 3.5 could generally expose fake news and provide desirable multi-perspective rationales but still underperforms the basic SLM, fine-tuned BERT. Our subsequent analysis attributes such a gap to the LLM's inability to select and integrate rationales properly to conclude. Based on these findings, we propose that current LLMs may not substitute fine-tuned SLMs in fake news detection but can be a good advisor for SLMs by providing multi-perspective instructive rationales. To instantiate this proposal, we design an adaptive rationale guidance network for fake news detection (ARG), in which SLMs selectively acquire insights on news analysis from the LLMs' rationales. We further derive a rationale-free version of ARG by distillation, namely ARG-D, which services cost-sensitive scenarios without inquiring LLMs. Experiments on two real-world datasets demonstrate that ARG and ARG-D outperform three types of baseline methods, including SLM-based, LLM-based, and combinations of small and large language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
now发布了新的文献求助10
2秒前
科研通AI2S应助WC采纳,获得10
3秒前
WCW完成签到,获得积分10
3秒前
一一发布了新的文献求助10
3秒前
4秒前
5秒前
小二郎应助演化的蛙鱼采纳,获得10
6秒前
梨花雨凉完成签到 ,获得积分10
7秒前
科研通AI2S应助Billy采纳,获得10
8秒前
追寻的白安完成签到,获得积分10
8秒前
霜序完成签到,获得积分10
9秒前
linhanwenzhou发布了新的文献求助10
9秒前
shi发布了新的文献求助10
10秒前
背后海亦完成签到,获得积分10
10秒前
hfg完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
14秒前
shi完成签到,获得积分10
15秒前
Yyy发布了新的文献求助10
16秒前
16秒前
QZZ发布了新的文献求助10
17秒前
liang完成签到 ,获得积分10
17秒前
NexusExplorer应助now采纳,获得10
18秒前
cdp应助滕擎采纳,获得10
19秒前
科目三应助吖吖采纳,获得10
19秒前
一一完成签到,获得积分10
21秒前
meng完成签到 ,获得积分10
21秒前
21秒前
linhanwenzhou完成签到,获得积分10
21秒前
彭于晏应助欣慰冬菱采纳,获得10
23秒前
最最完成签到,获得积分10
24秒前
24秒前
滕擎发布了新的文献求助10
26秒前
27秒前
养猪骑士发布了新的文献求助10
27秒前
29秒前
坚强的初夏完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923639
求助须知:如何正确求助?哪些是违规求助? 3468451
关于积分的说明 10952248
捐赠科研通 3197646
什么是DOI,文献DOI怎么找? 1766700
邀请新用户注册赠送积分活动 856451
科研通“疑难数据库(出版商)”最低求助积分说明 795429