Zero-1-to-3: Domain-Level Zero-Shot Cognitive Diagnosis via One Batch of Early-Bird Students towards Three Diagnostic Objectives

零(语言学) 弹丸 零点能量 认知 领域(数学分析) 心理学 数学 物理 数学分析 量子力学 材料科学 精神科 哲学 语言学 冶金
作者
Weibo Gao,Qi Liu,Hao Wang,Linan Yue,Haoyang Bi,Yin Gu,Fang‐Zhou Yao,Zheng Zhang,Xin Li,Yuanjing He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8417-8426 被引量:1
标识
DOI:10.1609/aaai.v38i8.28684
摘要

Cognitive diagnosis seeks to estimate the cognitive states of students by exploring their logged practice quiz data. It plays a pivotal role in personalized learning guidance within intelligent education systems. In this paper, we focus on an important, practical, yet often underexplored task: domain-level zero-shot cognitive diagnosis (DZCD), which arises due to the absence of student practice logs in newly launched domains. Recent cross-domain diagnostic models have been demonstrated to be a promising strategy for DZCD. These methods primarily focus on how to transfer student states across domains. However, they might inadvertently incorporate non-transferable information into student representations, thereby limiting the efficacy of knowledge transfer. To tackle this, we propose Zero-1-to-3, a domain-level zero-shot cognitive diagnosis framework via one batch of early-bird students towards three diagnostic objectives. Our approach initiates with pre-training a diagnosis model with dual regularizers, which decouples student states into domain-shared and domain-specific parts. The shared cognitive signals can be transferred to the target domain, enriching the cognitive priors for the new domain, which ensures the cognitive state propagation objective. Subsequently, we devise a strategy to generate simulated practice logs for cold-start students through analyzing the behavioral patterns from early-bird students, fulfilling the domain-adaption goal. Consequently, we refine the cognitive states of cold-start students as diagnostic outcomes via virtual data, aligning with the diagnosis-oriented goal. Finally, extensive experiments on six real-world datasets highlight the efficacy of our model for DZCD and its practical application in question recommendation. The code is publicly available at https://github.com/bigdata-ustc/Zero-1-to-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Jasper应助AM采纳,获得30
3秒前
3秒前
桐桐应助无限安蕾采纳,获得10
3秒前
6秒前
unique发布了新的文献求助10
7秒前
8秒前
9秒前
JiangHb完成签到,获得积分10
10秒前
现代秦始皇完成签到 ,获得积分10
12秒前
Lucas应助陆王牛马采纳,获得20
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
小二郎应助欢喜的断天采纳,获得30
14秒前
16秒前
22秒前
薏晓完成签到 ,获得积分10
24秒前
朴素的山蝶完成签到,获得积分10
29秒前
29秒前
科研废物完成签到 ,获得积分10
30秒前
烂漫代曼完成签到 ,获得积分10
31秒前
33秒前
爆米花应助顽强的小刘采纳,获得20
35秒前
wk发布了新的文献求助10
36秒前
Yunny发布了新的文献求助30
38秒前
38秒前
kiwi完成签到,获得积分10
40秒前
阔达的秀发完成签到,获得积分10
42秒前
Lan发布了新的文献求助10
42秒前
海鸥完成签到,获得积分10
47秒前
领导范儿应助Suica采纳,获得10
47秒前
JOKY完成签到 ,获得积分10
48秒前
CC完成签到,获得积分10
52秒前
852应助HUSHIYI采纳,获得10
53秒前
53秒前
李键刚完成签到 ,获得积分10
54秒前
自私的猫发布了新的文献求助10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781878
求助须知:如何正确求助?哪些是违规求助? 3327449
关于积分的说明 10231282
捐赠科研通 3042334
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758808