Introducing diminutive causal structure into graph representation learning

小的 图形 代表(政治) 数学 计算机科学 人工智能 组合数学 语言学 哲学 政治 政治学 法学
作者
Hang Gao,Peng Qiao,Y. Jin,Fengge Wu,Jiangmeng Li,Changwen Zheng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:293: 111592-111592 被引量:4
标识
DOI:10.1016/j.knosys.2024.111592
摘要

When engaging in end-to-end graph representation learning with Graph Neural Networks (GNNs), the intricate causal relationships and rules inherent in graph data pose a formidable challenge for the model in accurately capturing authentic data relationships. A proposed mitigating strategy involves the direct integration of rules or relationships corresponding to the graph data into the model. However, within the domain of graph representation learning, the inherent complexity of graph data obstructs the derivation of a comprehensive causal structure that encapsulates universal rules or relationships governing the entire dataset. Instead, only specialized diminutive causal structures, delineating specific causal relationships within constrained subsets of graph data, emerge as discernible. Motivated by empirical insights, it is observed that GNN models exhibit a tendency to converge towards such specialized causal structures during the training process. Consequently, we posit that the introduction of these specific causal structures is advantageous for the training of GNN models. Building upon this proposition, we introduce a novel method that enables GNN models to glean insights from these specialized diminutive causal structures, thereby enhancing overall performance. Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures and incorporates interchange intervention to optimize the learning process. Theoretical analysis serves to corroborate the efficacy of our proposed method. Furthermore, empirical experiments consistently demonstrate significant performance improvements across diverse datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huang发布了新的文献求助10
1秒前
lcs发布了新的文献求助30
1秒前
ninalee完成签到,获得积分10
2秒前
4秒前
5秒前
隐形曼青应助Glufo采纳,获得10
6秒前
7秒前
丹青完成签到 ,获得积分10
7秒前
viper3完成签到,获得积分10
8秒前
汉堡包应助珍妮采纳,获得10
9秒前
jeser完成签到,获得积分10
9秒前
10秒前
西西完成签到,获得积分10
10秒前
10秒前
11秒前
大海123发布了新的文献求助10
11秒前
Wanda发布了新的文献求助30
11秒前
12秒前
外星人完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
ray发布了新的文献求助10
14秒前
15秒前
科研通AI5应助王粒采纳,获得10
16秒前
16秒前
Rui发布了新的文献求助10
17秒前
英姑应助大海123采纳,获得10
18秒前
逆袭发布了新的文献求助10
19秒前
斯文的小旋风完成签到,获得积分0
19秒前
20秒前
曼话完成签到,获得积分10
21秒前
22秒前
Glufo发布了新的文献求助20
22秒前
汉堡包应助科研通管家采纳,获得10
23秒前
COSMAO应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
COSMAO应助科研通管家采纳,获得10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224881
求助须知:如何正确求助?哪些是违规求助? 3758199
关于积分的说明 11813279
捐赠科研通 3419863
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930347
科研通“疑难数据库(出版商)”最低求助积分说明 838581