清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

STDFormer: Spatial-Temporal Motion Transformer for Multiple Object Tracking

计算机科学 人工智能 计算机视觉 利用 运动估计 视频跟踪 目标检测 嵌入 匹配移动 模式识别(心理学) 运动(物理) 对象(语法) 计算机安全
作者
Mengjie Hu,Xiaotong Zhu,Haotian Wang,Shixiang Cao,Chun Liu,Qing Song
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6571-6594 被引量:16
标识
DOI:10.1109/tcsvt.2023.3263884
摘要

Mainstream multi-object tracking methods exploit appearance information and/or motion information to achieve interframe association. However, dealing with similar appearance and occlusion is a challenge for appearance information, while motion information is limited by linear assumptions and is prone to failure in nonlinear motion patterns. In this work, we disregard appearance clues and propose a pure motion tracker to address the above issues. It dexterously utilizes Transformer to estimate complex motion and achieves high-performance tracking with low computing resources. Furthermore, contrastive learning is introduced to optimize feature representation for robust association. Specifically, we first exploit the long-range modeling capability of Transformer to mine intention information in temporal motion and decision information in spatial interaction and introduce prior detection to constrain the range of motion estimation. Then, we introduce contrastive learning as an auxiliary task to extract reliable motion features to compute affinity and introduce bidirectional matching to improve the affinity computation distribution. In addition, given that both tasks are dedicated to narrowing the embedding distance between the motion features of the tracked object and the detection features, we design a joint-motion-and-association framework to unify the above two tasks in one framework for optimization. The experimental results achieved with three benchmark datasets, MOT17, MOT20 and DanceTrack, verify the effectiveness of our proposed method. Compared with state-of-the-art methods, the proposed STDFormer sets a new state-of-the-art on DanceTrack and achieves competitive performance on MOT17 and MOT20. This demonstrates the advantage of our method in handling associations under similar appearance, occlusion or nonlinear motion. At the same time, the significant advantages of the proposed method over Transformer-based and contrastive learning-based methods suggest a new direction for the application of Transformer and contrastive learning in MOT. In addition, to verify the generalization of STDFormer in unmanned aerial vehicle (UAV) videos, we also evaluate STDFormer on VisDrone2019. The results show that STDFormer achieves state-of-the-art performance on VisDrone2019, which proves that it can handle small-scale object associations in UAV videos well. The code is available at https://github.com/Xiaotong-Zhu/STDFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得10
3秒前
爱静静应助科研通管家采纳,获得30
3秒前
爱静静应助科研通管家采纳,获得30
3秒前
4秒前
su完成签到 ,获得积分10
6秒前
豆⑧完成签到,获得积分10
8秒前
8秒前
糖宝完成签到 ,获得积分10
18秒前
25秒前
Adam完成签到 ,获得积分10
35秒前
MM完成签到 ,获得积分10
36秒前
40秒前
河鲸完成签到 ,获得积分10
45秒前
xiaoyi完成签到 ,获得积分10
45秒前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
夜话风陵杜完成签到 ,获得积分0
1分钟前
1分钟前
咕咕发布了新的文献求助10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
雍州小铁匠完成签到 ,获得积分10
1分钟前
郑岩完成签到,获得积分10
1分钟前
Eric800824完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
Kevin完成签到,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
biocreater完成签到,获得积分10
1分钟前
乐乐应助咕咕采纳,获得10
1分钟前
咕咕完成签到,获得积分20
2分钟前
宏伟应助科研通管家采纳,获得20
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
2分钟前
ZJZALLEN完成签到 ,获得积分10
2分钟前
轩辕远航完成签到 ,获得积分10
2分钟前
Spring完成签到,获得积分10
2分钟前
LIGANG1111完成签到 ,获得积分10
2分钟前
xianyaoz完成签到 ,获得积分0
2分钟前
俊逸的白梦完成签到 ,获得积分0
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336769
关于积分的说明 10282111
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468