亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 计算机科学 任务(项目管理) 模式识别(心理学) 园艺 生物 工程类 计算机图形学(图像) 系统工程
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:146: 126812-126812 被引量:27
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
共享精神应助fheu采纳,获得10
3秒前
标致飞雪发布了新的文献求助20
5秒前
leslie发布了新的文献求助10
6秒前
领导范儿应助cnbhhhhh采纳,获得10
8秒前
9秒前
14秒前
fheu发布了新的文献求助10
18秒前
江姜酱先生完成签到,获得积分10
20秒前
康康完成签到,获得积分10
23秒前
雨雨雨雨雨文完成签到 ,获得积分10
29秒前
日光下完成签到 ,获得积分10
33秒前
许三问完成签到 ,获得积分0
33秒前
40秒前
qx发布了新的文献求助10
47秒前
48秒前
48秒前
直率奇迹完成签到 ,获得积分10
54秒前
朱朱猪猪完成签到,获得积分10
54秒前
Owen应助马喽打工仔采纳,获得30
55秒前
陈时懿完成签到,获得积分10
56秒前
1分钟前
qx完成签到,获得积分10
1分钟前
1分钟前
www完成签到 ,获得积分10
1分钟前
wanci应助陈时懿采纳,获得10
1分钟前
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
1分钟前
完美世界应助p13508397190采纳,获得30
1分钟前
1分钟前
跳跃野狼发布了新的文献求助10
1分钟前
小宋爱睡觉完成签到 ,获得积分10
1分钟前
liyx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助芬芬采纳,获得10
1分钟前
阳光的玉米完成签到,获得积分10
1分钟前
cnbhhhhh发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702