清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 计算机科学 任务(项目管理) 模式识别(心理学) 园艺 生物 工程类 计算机图形学(图像) 系统工程
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:146: 126812-126812 被引量:35
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
如泣草芥完成签到,获得积分0
15秒前
糊涂的青烟完成签到 ,获得积分10
16秒前
17秒前
典雅三颜完成签到 ,获得积分10
18秒前
个性仙人掌完成签到 ,获得积分10
19秒前
gao完成签到 ,获得积分10
21秒前
Sunny完成签到,获得积分10
21秒前
完美梨愁完成签到 ,获得积分10
25秒前
先锋老刘001完成签到,获得积分10
29秒前
dream完成签到 ,获得积分10
38秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
新奇完成签到 ,获得积分10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
MISA完成签到 ,获得积分10
1分钟前
LT完成签到 ,获得积分0
1分钟前
tomorrowstronger完成签到 ,获得积分20
1分钟前
随缘完成签到 ,获得积分10
1分钟前
NexusExplorer应助yan采纳,获得10
1分钟前
Boris完成签到 ,获得积分10
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
AURORA丶完成签到 ,获得积分10
1分钟前
Orange应助Jason采纳,获得10
1分钟前
1分钟前
yan发布了新的文献求助10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
Zhangfu完成签到,获得积分10
2分钟前
2分钟前
活泼学生完成签到 ,获得积分10
2分钟前
个性松完成签到 ,获得积分10
2分钟前
珠珠完成签到 ,获得积分10
2分钟前
chengxiping发布了新的文献求助10
2分钟前
亭2007完成签到 ,获得积分10
2分钟前
chengxiping完成签到,获得积分10
2分钟前
louyu完成签到 ,获得积分0
2分钟前
tyro完成签到,获得积分10
2分钟前
husky完成签到,获得积分10
2分钟前
34101127完成签到 ,获得积分10
2分钟前
打打应助34101127采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612797
求助须知:如何正确求助?哪些是违规求助? 4017872
关于积分的说明 12436835
捐赠科研通 3700139
什么是DOI,文献DOI怎么找? 2040580
邀请新用户注册赠送积分活动 1073377
科研通“疑难数据库(出版商)”最低求助积分说明 957018