电催化剂
过电位
析氧
复合数
材料科学
分解水
石墨烯
纳米线
化学工程
电极
电化学
纳米技术
复合材料
化学
催化作用
有机化学
工程类
物理化学
光催化
作者
Bolin Li,Zesheng Li,Qi Pang,Jin Z. Zhang
标识
DOI:10.1016/j.cej.2020.126045
摘要
A new core/shell 1-D nanostructure based on Ni3S2 nanowires and N-doped graphene-like carbon layers on nickel foam (i.e. Ni3S2@NGCLs/NF) has been fabricated and applied as composite electrocatalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting. The Ni3S2@NGCLs exhibit a unique architecture with a well-defined core–shell cable-like one-dimensional nanostructure in which NGCLs act as conductive shell and Ni3S2 nanowire as active core. The composite has a nitrogen content of 6.39% in atomic ratio. The Ni3S2@NGCLs/NF shows low overpotentials of 271 mV and 134 mV at 10 mA cm−2 in 1.0 M KOH for OER and HER, respectively. Highly durable OER and HER performances were demonstrated by 40 h chronopotentiometry and 10,000 CV cycle tests. Excellent overall water splitting electrocatalytic activity was found in a Ni3S2@NGCLs/NF‖Ni3S2@NGCLs/NF two-electrode system. Particularly, an active-phase NiOOH, a highly active substance for OER, can be controllably formed in the reaction process due to the shell structure of multi-layer carbon that slows down the dissolution of Ni3S2. Theoretical calculations suggest that Ni3S2@NGCLs/NF has a lower ΔG (H*) value of 0.51 eV for HER and lower overpotential value of 0.39 V for OER. These results suggest that the composite structure is a promising bifunctional electrocatalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI