亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rectifying Supporting Regions With Mixed and Active Supervision for Rib Fracture Recognition

计算机视觉 医学 模式识别(心理学)
作者
Yijie Huang,Weiping Liu,Xiuying Wang,Qu Fang,Renzhen Wang,Yi Wang,Huai Chen,Hao Chen,Deyu Meng,Lisheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 3843-3854 被引量:6
标识
DOI:10.1109/tmi.2020.3006138
摘要

Automatic rib fracture recognition from chest X-ray images is clinically important yet challenging due to weak saliency of fractures. Weakly Supervised Learning (WSL) models recognize fractures by learning from large-scale image-level labels. In WSL, Class Activation Maps (CAMs) are considered to provide spatial interpretations on classification decisions. However, the high-responding regions, namely Supporting Regions of CAMs may erroneously lock to regions irrelevant to fractures, which thereby raises concerns on the reliability of WSL models for clinical applications. Currently available Mixed Supervised Learning (MSL) models utilize object-level labels to assist fitting WSL-derived CAMs. However, as a prerequisite of MSL, the large quantity of precisely delineated labels is rarely available for rib fracture tasks. To address these problems, this paper proposes a novel MSL framework. Firstly, by embedding the adversarial classification learning into WSL frameworks, the proposed Biased Correlation Decoupling and Instance Separation Enhancing strategies guide CAMs to true fractures indirectly. The CAM guidance is insensitive to shape and size variations of object descriptions, thereby enables robust learning from bounding boxes. Secondly, to further minimize annotation cost in MSL, a CAM-based Active Learning strategy is proposed to recognize and annotate samples whose Supporting Regions cannot be confidently localized. Consequently, the quantity demand of object-level labels can be reduced without compromising the performance. Over a chest X-ray rib-fracture dataset of 10966 images, the experimental results show that our method produces rational Supporting Regions to interpret its classification decisions and outperforms competing methods at an expense of annotating 20% of the positive samples with bounding boxes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
小哈完成签到 ,获得积分10
11秒前
动漫大师发布了新的文献求助10
12秒前
19秒前
cxw发布了新的文献求助10
24秒前
29秒前
南一完成签到 ,获得积分10
33秒前
joleisalau发布了新的文献求助10
34秒前
35秒前
joleisalau完成签到,获得积分10
40秒前
可靠的雁荷完成签到,获得积分10
42秒前
夜雨声烦完成签到,获得积分10
48秒前
51秒前
wanci应助Ytgl采纳,获得10
53秒前
超男完成签到 ,获得积分10
53秒前
57秒前
1分钟前
英姑应助莫里亚蒂采纳,获得10
1分钟前
Ytgl发布了新的文献求助10
1分钟前
爱听歌的孤晴完成签到,获得积分10
1分钟前
1分钟前
赘婿应助活泼的定帮采纳,获得10
1分钟前
1分钟前
1分钟前
内向绿海发布了新的文献求助10
1分钟前
我的小k8完成签到,获得积分10
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
1分钟前
我的小k8发布了新的文献求助10
1分钟前
1分钟前
rrrrrrry发布了新的文献求助10
1分钟前
科研通AI5应助可靠的雁荷采纳,获得10
1分钟前
万能图书馆应助fl采纳,获得10
1分钟前
1分钟前
fl发布了新的文献求助10
1分钟前
sifan完成签到 ,获得积分10
1分钟前
故意的冰淇淋完成签到 ,获得积分10
2分钟前
Finch11完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780779
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732