Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics

制冷剂 过冷 冷凝 热力学 均方误差 材料科学 气体压缩机 数学 沸腾 统计 物理
作者
Yechan Yun,Young Soo Chang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 1780-1780 被引量:10
标识
DOI:10.3390/app11041780
摘要

Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount based on steady-state operation; however, steady-state experiments used to develop prediction models for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction model was established with dynamic experimental data to overcome these deficiencies. The dynamic models for the condensation temperature, degree of subcooling, compressor discharge temperature, and power consumption were developed with a regression support vector machine (r-SVM) model and start-up experimental data. The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively. The refrigerant charge is one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated by minimizing the RMSE of the predicted values of the dynamic models and experimental data. When the dynamic characteristics of the two predictor variables, “condensation temperature” and “degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Sayhai采纳,获得10
刚刚
yao发布了新的文献求助80
刚刚
LCX完成签到,获得积分10
1秒前
可靠的老鼠完成签到,获得积分10
1秒前
xiantao完成签到,获得积分10
1秒前
L563发布了新的文献求助10
1秒前
ddd123完成签到,获得积分10
1秒前
fgvshow完成签到,获得积分10
1秒前
浮游应助常常采纳,获得10
2秒前
wanci应助笑忘书采纳,获得10
2秒前
zz完成签到,获得积分10
2秒前
lyu发布了新的文献求助10
3秒前
Louie~完成签到 ,获得积分10
3秒前
penghui发布了新的文献求助10
3秒前
香蕉觅云应助谢婉莹采纳,获得10
3秒前
池鱼发布了新的文献求助30
4秒前
4秒前
酒菜盒子完成签到 ,获得积分10
5秒前
DSL、完成签到,获得积分10
5秒前
打打应助浩瀚采纳,获得10
5秒前
5秒前
不安的嘉懿完成签到,获得积分10
5秒前
5秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
852应助小袁采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
glacial完成签到,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
curry发布了新的文献求助10
8秒前
赫若魔应助科研通管家采纳,获得10
8秒前
flypipidan完成签到,获得积分10
8秒前
8秒前
8秒前
fhkq完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4835575
求助须知:如何正确求助?哪些是违规求助? 4139231
关于积分的说明 12812713
捐赠科研通 3883419
什么是DOI,文献DOI怎么找? 2135490
邀请新用户注册赠送积分活动 1155584
关于科研通互助平台的介绍 1054989