Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics

制冷剂 过冷 冷凝 热力学 均方误差 材料科学 气体压缩机 数学 沸腾 统计 物理
作者
Yechan Yun,Young Soo Chang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 1780-1780 被引量:10
标识
DOI:10.3390/app11041780
摘要

Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount based on steady-state operation; however, steady-state experiments used to develop prediction models for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction model was established with dynamic experimental data to overcome these deficiencies. The dynamic models for the condensation temperature, degree of subcooling, compressor discharge temperature, and power consumption were developed with a regression support vector machine (r-SVM) model and start-up experimental data. The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively. The refrigerant charge is one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated by minimizing the RMSE of the predicted values of the dynamic models and experimental data. When the dynamic characteristics of the two predictor variables, “condensation temperature” and “degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助蝌蚪采纳,获得10
1秒前
Jackie完成签到,获得积分10
1秒前
派大星的海洋裤完成签到,获得积分10
2秒前
胡八万应助Sean采纳,获得10
2秒前
2秒前
2秒前
风吹麦田应助棠真采纳,获得10
2秒前
狗不理完成签到,获得积分10
2秒前
细菌性肺炎完成签到,获得积分10
3秒前
闪亮的季节完成签到,获得积分20
3秒前
深情的菲音完成签到 ,获得积分10
3秒前
3秒前
3秒前
辛勤的刚完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
852应助赵睿豪采纳,获得10
5秒前
wlpping发布了新的文献求助10
5秒前
狗焕完成签到,获得积分10
5秒前
huba发布了新的文献求助10
5秒前
5秒前
叫我少爷完成签到 ,获得积分10
7秒前
星辰大海应助CDreamY采纳,获得10
7秒前
自由香魔发布了新的文献求助10
7秒前
林哈哈发布了新的文献求助10
7秒前
NexusExplorer应助lv采纳,获得10
8秒前
丘比特应助谷谷采纳,获得10
8秒前
Sky发布了新的文献求助10
8秒前
9秒前
orixero应助12366666采纳,获得10
10秒前
10秒前
执着小小应助路人贾采纳,获得200
10秒前
Ellen完成签到,获得积分10
10秒前
柒月小鱼完成签到 ,获得积分10
10秒前
自由香魔完成签到,获得积分10
11秒前
JOKERH叶发布了新的文献求助10
11秒前
12秒前
111完成签到,获得积分10
14秒前
蜜雪冰城完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817975
求助须知:如何正确求助?哪些是违规求助? 3361163
关于积分的说明 10411894
捐赠科研通 3079381
什么是DOI,文献DOI怎么找? 1691165
邀请新用户注册赠送积分活动 814400
科研通“疑难数据库(出版商)”最低求助积分说明 768175