已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Defect Engineering of Palladium–Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions

纳米线 燃料电池 材料科学 纳米技术 化学工程 电催化剂 冶金 电化学 催化作用 电极 化学 物理化学 工程类 生物化学
作者
Ying Zhang,Bolong Huang,Qi Shao,Yonggang Feng,Likun Xiong,Yang Peng,Xiaoqing Huang
出处
期刊:Nano Letters [American Chemical Society]
卷期号:19 (10): 6894-6903 被引量:109
标识
DOI:10.1021/acs.nanolett.9b02137
摘要

The defect engineering of noble metal nanostructures is of vital importance because it can provide an additional yet advanced tier to further boost catalysis, especially for one-dimensional (1D) noble metal nanostructures with a high surface to bulk ratio and more importantly the ability to engineer the defect along the longitudinal direction of the 1D nanostructures. Herein, for the first time, we report that the defect in 1D noble metal nanostructures is a largely unrevealed yet essential factor in achieving highly active and stable electrocatalysts toward fuel cell reactions. The detailed electrocatalytic results show that the Pd-Sn nanowires (NWs) exhibit interesting defect-dependent performance, in which the defect-rich Pd4Sn wavy NWs display the highest activity and durability for both the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations reveal that a large number of surface vacancies/agglomerated voids are the driving forces for forming surface grain boundaries (GBs) within Pd4Sn WNWs. These electronic active GB regions are the key factors in preserving the number of Pd0 sites, which are critical for minimizing the intrinsic site-to-site electron-transfer barriers. Through this defect engineering, the Pd4Sn WNWs ultimately yield highly efficient alkaline ORR and MOR. The present work highlights the importance of defect engineering in boosting the performance of electrocatalysts for potentially practical fuel cells and energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕊蕊发布了新的文献求助10
刚刚
大白发布了新的文献求助10
刚刚
田様应助Miranda采纳,获得10
1秒前
1秒前
2秒前
3秒前
Ssmall发布了新的文献求助20
5秒前
asdasdasd发布了新的文献求助10
6秒前
852应助直率的映冬采纳,获得10
8秒前
8秒前
8秒前
想要礼物的艾斯米拉达完成签到,获得积分10
8秒前
10秒前
MaFY完成签到,获得积分10
10秒前
浮名半生完成签到,获得积分10
11秒前
11秒前
严小之发布了新的文献求助10
12秒前
LINGYUAN1991应助菜鸡5号采纳,获得20
13秒前
Jessica完成签到 ,获得积分10
14秒前
汉堡包应助zn2209采纳,获得10
14秒前
科研通AI6应助MaFY采纳,获得10
14秒前
purple完成签到 ,获得积分10
14秒前
15秒前
浮游应助研友_ngX12Z采纳,获得10
15秒前
冲冲冲完成签到 ,获得积分10
15秒前
16秒前
严小之完成签到,获得积分10
16秒前
17秒前
17秒前
asdasdasd完成签到,获得积分10
17秒前
17秒前
碧蓝世界完成签到 ,获得积分10
18秒前
小只发布了新的文献求助10
20秒前
万能图书馆应助Qinghen采纳,获得10
21秒前
23秒前
23秒前
24秒前
左耳钉完成签到,获得积分0
24秒前
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209140
求助须知:如何正确求助?哪些是违规求助? 4386469
关于积分的说明 13660937
捐赠科研通 4245610
什么是DOI,文献DOI怎么找? 2329382
邀请新用户注册赠送积分活动 1327206
关于科研通互助平台的介绍 1279519