Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases

细胞器 微管 细胞生物学 生物 细胞骨架 肌动蛋白 细胞质 染色质 生物发生 化学 细胞 基因 遗传学
作者
Hong Zhang,Ji Xiong,Pilong Li,Cong Liu,Jizhong Lou,Zheng Wang,Wenyu Wen,Yue Xiao,Mingjie Zhang,Xueliang Zhu
出处
期刊:Science China-life Sciences [Springer Nature]
卷期号:63 (7): 953-985 被引量:297
标识
DOI:10.1007/s11427-020-1702-x
摘要

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助JW采纳,获得30
1秒前
杜梦茹完成签到,获得积分10
1秒前
1秒前
李xue发布了新的文献求助10
1秒前
隐形曼青应助zmq采纳,获得10
1秒前
2秒前
2秒前
缓慢钢笔发布了新的文献求助10
2秒前
止观发布了新的文献求助10
3秒前
3秒前
babayaga完成签到,获得积分10
3秒前
科目三应助阿黛尔采纳,获得10
3秒前
guang_sl发布了新的文献求助10
4秒前
4秒前
4秒前
情怀应助勤恳的妙旋采纳,获得10
5秒前
XPDrake完成签到,获得积分20
5秒前
芝藕粥完成签到,获得积分10
5秒前
哈哈哈哈哈完成签到,获得积分20
5秒前
7秒前
laifeihong发布了新的文献求助10
7秒前
酷酷李可爱婕完成签到 ,获得积分10
7秒前
8秒前
月亮完成签到 ,获得积分10
8秒前
qqq发布了新的文献求助10
8秒前
XPDrake发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
笨蛋小章应助Lilyun采纳,获得10
9秒前
科研的牲口完成签到,获得积分10
9秒前
无花果应助SMQ采纳,获得10
9秒前
10秒前
呆萌的源智完成签到,获得积分10
10秒前
10秒前
11秒前
杜梦茹发布了新的文献求助10
11秒前
11秒前
babayaga发布了新的文献求助10
11秒前
ink完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647788
求助须知:如何正确求助?哪些是违规求助? 4774392
关于积分的说明 15041599
捐赠科研通 4806799
什么是DOI,文献DOI怎么找? 2570412
邀请新用户注册赠送积分活动 1527196
关于科研通互助平台的介绍 1486288