Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases

细胞器 微管 细胞生物学 生物 细胞骨架 肌动蛋白 细胞质 染色质 生物发生 化学 细胞 基因 遗传学
作者
Hong Zhang,Ji Xiong,Pilong Li,Cong Liu,Jizhong Lou,Zheng Wang,Wenyu Wen,Yue Xiao,Mingjie Zhang,Xueliang Zhu
出处
期刊:Science China-life Sciences [Springer Science+Business Media]
卷期号:63 (7): 953-985 被引量:251
标识
DOI:10.1007/s11427-020-1702-x
摘要

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助11111采纳,获得20
4秒前
oxear应助半糖可乐采纳,获得10
5秒前
读行千万发布了新的文献求助10
5秒前
NexusExplorer应助繁花采纳,获得10
6秒前
7秒前
昔年完成签到 ,获得积分10
9秒前
11秒前
11秒前
血琳祎发布了新的文献求助10
12秒前
13秒前
一只小羊发布了新的文献求助10
13秒前
酷波er应助linzg采纳,获得10
15秒前
16秒前
敏感初露发布了新的文献求助10
16秒前
Dream完成签到,获得积分0
16秒前
oxear应助科通研AI采纳,获得10
17秒前
lixian完成签到,获得积分20
17秒前
18秒前
19秒前
20秒前
思源应助敏感初露采纳,获得10
20秒前
星辰大海应助Jennifer采纳,获得10
21秒前
lucia5354完成签到,获得积分10
22秒前
英勇羿发布了新的文献求助10
23秒前
linzg发布了新的文献求助10
26秒前
27秒前
酷波er应助糊涂的MJ采纳,获得10
27秒前
27秒前
英勇羿完成签到,获得积分10
29秒前
32秒前
xtt发布了新的文献求助10
33秒前
37秒前
Jennifer发布了新的文献求助10
38秒前
kwen完成签到 ,获得积分10
39秒前
彭于晏应助百事采纳,获得10
40秒前
41秒前
41秒前
42秒前
11111发布了新的文献求助20
44秒前
小马甲应助刘星星采纳,获得10
44秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
Pleistocene Mammals of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832793
求助须知:如何正确求助?哪些是违规求助? 3375262
关于积分的说明 10488176
捐赠科研通 3094858
什么是DOI,文献DOI怎么找? 1704025
邀请新用户注册赠送积分活动 819723
科研通“疑难数据库(出版商)”最低求助积分说明 771623