Anatomically Constrained Deep Learning for Automating Dental CBCT Segmentation and Lesion Detection

人工智能 深度学习 分割 掷骰子 计算机科学 Sørensen–骰子系数 图像分割 自动化 模态(人机交互) 机器学习 模式识别(心理学) 数学 工程类 机械工程 几何学
作者
Zhiyang Zheng,Hao Yan,Frank Setzer,Katherine J. Shi,Mel Mupparapu,Jing Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 603-614 被引量:88
标识
DOI:10.1109/tase.2020.3025871
摘要

Compared with the rapidly growing artificial intelligence (AI) research in other branches of healthcare, the pace of developing AI capacities in dental care is relatively slow. Dental care automation, especially the automated capability for dental cone beam computed tomography (CBCT) segmentation and lesion detection, is highly needed. CBCT is an important imaging modality that is experiencing ever-growing utilization in various dental specialties. However, little research has been done for segmenting different structures, restorative materials, and lesions using deep learning. This is due to multifold challenges such as content-rich oral cavity and significant within-label variation on each CBCT image as well as the inherent difficulty of obtaining many high-quality labeled images for training. On the other hand, oral-anatomical knowledge exists in dentistry, which shall be leveraged and integrated into the deep learning design. In this article, we propose a novel anatomically constrained Dense U-Net for integrating oral-anatomical knowledge with data-driven Dense U-Net. The proposed algorithm is formulated as a regularized or constrained optimization and solved using mean-field variational approximation to achieve computational efficiency. Mathematical encoding for transforming descriptive knowledge into a quantitative form is also proposed. Our experiment demonstrates that the proposed algorithm outperforms the standard Dense U-Net in both lesion detection accuracy and dice coefficient (DICE) indices in multilabel segmentation. Benefited from the integration with anatomical domain knowledge, our algorithm performs well with data from a small number of patients included in the training. Note to Practitioners-This article proposes a novel deep learning algorithm to enable the automated capability for cone beam computed tomography (CBCT) segmentation and lesion detection. Despite the growing adoption of CBCT in various dental specialties, such capability is currently lacking. The proposed work will provide tools to help reduce subjectivity and human errors, as well as streamline and expedite the clinical workflow. This will greatly facilitate dental care automation. Furthermore, due to the capacity of integrating oral-anatomical knowledge into the deep learning design, the proposed algorithm does not require many high-quality labeled images to train. The algorithm can provide good accuracy under limited training samples. This ability is highly desirable for practitioners by saving labor-intensive, costly labeling efforts, and enjoying the benefits provided by AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助方冰绿采纳,获得10
刚刚
Ning完成签到,获得积分10
1秒前
ShiRz发布了新的文献求助10
3秒前
zrs发布了新的文献求助10
3秒前
长安888完成签到,获得积分10
4秒前
???完成签到,获得积分10
4秒前
5秒前
传奇3应助jason采纳,获得10
6秒前
无限毛豆完成签到 ,获得积分10
7秒前
康康完成签到,获得积分10
7秒前
8秒前
8秒前
我是老大应助zrs采纳,获得10
9秒前
10秒前
鲑鱼完成签到 ,获得积分10
11秒前
浮生若梦完成签到 ,获得积分10
11秒前
welch完成签到,获得积分10
12秒前
13秒前
溯a发布了新的文献求助10
14秒前
wxyes发布了新的文献求助10
15秒前
15秒前
15秒前
田様应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得30
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得20
16秒前
Hello应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
iNk应助科研通管家采纳,获得20
17秒前
所所应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
快乐的鱼发布了新的文献求助10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304