Efficient Outdoor Video Semantic Segmentation Using Feedback-Based Fully Convolution Neural Network

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 深度学习 人工神经网络 图像分割 计算机视觉 卷积(计算机科学)
作者
Chi-Chong Wong,Yanfen Gan,Chi‐Man Vong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (8): 5128-5136 被引量:10
标识
DOI:10.1109/tii.2019.2950031
摘要

In this article, we focus on efficient semantic segmentation problem from sequential two-dimensional images, in which all pixels are classified into certain classes for scene understanding. Such problem is challenging because it involves constraints of both spatial and temporal consistencies, which have large difficulties in explicitly determining such structural constraints. Traditionally, such a problem is tackled using structured prediction method, such as conditional random field (CRF). However, pure CRF method suffers from very high complexity in computing high-order potentials and slow performance during inference step, which is unsuitable for efficient video segmentation in real scenario. In this article, a novel feedback-based deep fully convolutional neural network (CNN) is proposed to inherently incorporate spatial context through appending output feedback mechanism. The proposed method has the following contributions: 1) spatial context in images are easily captured through iterative feedback refinement, without the expensive postprocess step such as CRF refinement; 2) easily integrated with generic deep CNN structure; and 3) the inference time is greatly reduced for efficient image segmentation. Compared to current state-of-the-art methods, our proposed method was shown to provide up to 14% better accuracy on semantic segmentation task in challenging Camvid and Cityscapes datasets, while taking up to relatively 980% shorter inference time. The proposed method also shows its effectiveness for real-time road detection task of autonomous driving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助52pry采纳,获得10
1秒前
2秒前
xufund发布了新的文献求助10
3秒前
4秒前
6秒前
露亮完成签到,获得积分10
7秒前
fr应助兴奋采梦采纳,获得10
8秒前
jam发布了新的文献求助30
9秒前
露亮发布了新的文献求助10
9秒前
桐桐应助whole采纳,获得10
9秒前
10秒前
11秒前
大师现在完成签到,获得积分10
12秒前
fr应助可靠的映阳采纳,获得10
12秒前
12秒前
14秒前
AQ发布了新的文献求助10
14秒前
Jasper应助dandan采纳,获得10
15秒前
Helium发布了新的文献求助10
16秒前
16秒前
16秒前
俊逸柏柳发布了新的文献求助10
17秒前
19秒前
20秒前
20秒前
Gloria完成签到,获得积分10
20秒前
夕阳发布了新的文献求助10
21秒前
大师现在发布了新的文献求助10
21秒前
赵文若发布了新的文献求助10
21秒前
kingcoming发布了新的文献求助10
22秒前
HEAUBOOK应助xiaomili采纳,获得10
23秒前
52pry发布了新的文献求助10
24秒前
jam完成签到,获得积分10
24秒前
24秒前
zyc发布了新的文献求助30
24秒前
Orange应助俊逸柏柳采纳,获得10
25秒前
小飞飞应助怪怪采纳,获得50
26秒前
27秒前
27秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780495
求助须知:如何正确求助?哪些是违规求助? 3325980
关于积分的说明 10224964
捐赠科研通 3041047
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667