Radiation Tolerant Nanowire Array Solar Cells

纳米线 光伏 光电子学 材料科学 太阳能电池 电磁屏蔽 辐射 砷化镓 纳米技术 辐照 平面的 光伏系统 光学 物理 电气工程 计算机图形学(图像) 复合材料 计算机科学 核物理学 工程类
作者
Pilar Espinet‐González,Enrique Barrigón,Gaute Otnes,Giuliano Vescovi,Colin J. Mann,Ryan M. France,Alex J. Welch,Matthew S. Hunt,Don Walker,Michael D. Kelzenberg,Ingvar Åberg,Magnus T. Borgström,Lars Samuelson,Harry A. Atwater
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (11): 12860-12869 被引量:34
标识
DOI:10.1021/acsnano.9b05213
摘要

Space power systems require photovoltaics that are lightweight, efficient, reliable, and capable of operating for years or decades in space environment. Current solar panels use planar multijunction, III-V based solar cells with very high efficiency, but their specific power (power to weight ratio) is limited by the added mass of radiation shielding (e.g., coverglass) required to protect the cells from the high-energy particle radiation that occurs in space. Here, we demonstrate that III-V nanowire-array solar cells have dramatically superior radiation performance relative to planar solar cell designs and show this for multiple cell geometries and materials, including GaAs and InP. Nanowire cells exhibit damage thresholds ranging from ∼10-40 times higher than planar control solar cells when subjected to irradiation by 100-350 keV protons and 1 MeV electrons. Using Monte Carlo simulations, we show that this improvement is due in part to a reduction in the displacement density within the wires arising from their nanoscale dimensions. Radiation tolerance, combined with the efficient optical absorption and the improving performance of nanowire photovoltaics, indicates that nanowire arrays could provide a pathway to realize high-specific-power, substrate-free, III-V space solar cells with substantially reduced shielding requirements. More broadly, the exceptional reduction in radiation damage suggests that nanowire architectures may be useful in improving the radiation tolerance of other electronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助sheep采纳,获得10
1秒前
优秀的莹完成签到,获得积分20
1秒前
滴迪氐媂发布了新的文献求助10
3秒前
kkkk发布了新的文献求助10
3秒前
陈海明完成签到,获得积分10
3秒前
4秒前
潘善若发布了新的文献求助10
4秒前
6秒前
杨嘟嘟完成签到,获得积分10
6秒前
YangSY完成签到,获得积分10
7秒前
彭于晏应助潘善若采纳,获得30
9秒前
子伯完成签到,获得积分10
11秒前
Alfred发布了新的文献求助10
11秒前
JamesPei应助916采纳,获得10
13秒前
13秒前
搜集达人应助能干涵瑶采纳,获得10
13秒前
充电宝应助酷炫依白采纳,获得10
14秒前
kkkk完成签到,获得积分10
14秒前
自然的清涟完成签到 ,获得积分10
15秒前
15秒前
15秒前
18秒前
勤劳的晓镍完成签到 ,获得积分10
19秒前
史前巨怪发布了新的文献求助10
19秒前
科研小白完成签到 ,获得积分10
19秒前
20秒前
Leen发布了新的文献求助10
20秒前
mo发布了新的文献求助10
21秒前
22秒前
UU完成签到,获得积分10
23秒前
科研通AI5应助无限安蕾采纳,获得10
23秒前
24秒前
Alfred发布了新的文献求助10
25秒前
cc2713206完成签到,获得积分0
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
小白应助科研通管家采纳,获得20
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627