Learning to Collude in a Pricing Duopoly

双头垄断 微观经济学 经济 竞赛(生物学) 收入 竞争对手分析 趋同(经济学) 限价 计算机科学 数理经济学 古诺竞争 价格水平 会计 生物 凯恩斯经济学 经济增长 管理 生态学
作者
Janusz M Meylahn,Arnoud V. den Boer
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2577-2594 被引量:23
标识
DOI:10.1287/msom.2021.1074
摘要

Problem definition: This paper addresses the question whether or not self-learning algorithms can learn to collude instead of compete against each other, without violating existing competition law. Academic/practical relevance: This question is practically relevant (and hotly debated) for competition regulators, and academically relevant in the area of analysis of multi-agent data-driven algorithms. Methodology: We construct a price algorithm based on simultaneous-perturbation Kiefer–Wolfowitz recursions. We derive theoretical bounds on its limiting behavior of prices and revenues, in the case that both sellers in a duopoly independently use the algorithm, and in the case that one seller uses the algorithm and the other seller sets prices competitively. Results: We mathematically prove that, if implemented independently by two price-setting firms in a duopoly, prices will converge to those that maximize the firms’ joint revenue in case this is profitable for both firms, and to a competitive equilibrium otherwise. We prove this latter convergence result under the assumption that the firms use a misspecified monopolist demand model, thereby providing evidence for the so-called market-response hypothesis that both firms’ pricing as a monopolist may result in convergence to a competitive equilibrium. If the competitor is not willing to collaborate but prices according to a strategy from a certain class of strategies, we prove that the prices generated by our algorithm converge to a best-response to the competitor’s limit price. Managerial implications: Our algorithm can learn to collude under self-play while simultaneously learn to price competitively against a ‘regular’ competitor, in a setting where the price-demand relation is unknown and within the boundaries of competition law. This demonstrates that algorithmic collusion is a genuine threat in realistic market scenarios. Moreover, our work exemplifies how algorithms can be explicitly designed to learn to collude, and demonstrates that algorithmic collusion is facilitated (a) by the empirically observed practice of (explicitly or implicitly) sharing demand information, and (b) by allowing different firms in a market to use the same price algorithm. These are important and concrete insights for lawmakers and competition policy professionals struggling with how to respond to algorithmic collusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巷陌巾完成签到,获得积分10
刚刚
呱呱乐完成签到,获得积分10
1秒前
852应助火星上的迎天采纳,获得10
1秒前
2秒前
猪猪hero应助mn略略略采纳,获得10
2秒前
3秒前
FashionBoy应助NingnnnZhang采纳,获得10
3秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得30
4秒前
哈哈哈完成签到,获得积分10
4秒前
摸摸头应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
深竹月完成签到,获得积分10
6秒前
曾经的明雪完成签到,获得积分20
6秒前
依风完成签到,获得积分10
6秒前
Timmy发布了新的文献求助10
7秒前
阿飞完成签到 ,获得积分10
7秒前
wxy完成签到,获得积分10
7秒前
科研通AI5应助QinGY采纳,获得10
7秒前
9秒前
12秒前
隐形曼青应助neil采纳,获得10
13秒前
小明完成签到,获得积分10
15秒前
Timmy完成签到,获得积分20
16秒前
16秒前
小科完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798813
求助须知:如何正确求助?哪些是违规求助? 3344550
关于积分的说明 10320522
捐赠科研通 3060978
什么是DOI,文献DOI怎么找? 1679963
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386