An enhanced spatiotemporal fusion method – Implications for DNN based time-series LAI estimation by using Sentinel-2 and MODIS

均方误差 叶面积指数 稳健性(进化) 残余物 人工神经网络 遥感 数学 图像分辨率 统计 计算机科学 人工智能 算法 地理 生物 化学 基因 生物化学 生态学
作者
Yan Li,Yanzhao Ren,Wanlin Gao,Jingdun Jia,Sha Tao,Xinliang Liu
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:279: 108452-108452 被引量:17
标识
DOI:10.1016/j.fcr.2022.108452
摘要

The consequent and accurate monitoring of the seasonal dynamics of crop leaf area index (LAI) is critical to yield estimation and agriculture policy development. It is difficult for a single sensor to balance spatial and temporal resolution. Spatiotemporal fusion is an effective way to meet the need for high spatial and temporal applications. Among the fusion methods, regression model Fitting, spatial Filtering and residual Compensation (Fit-FC) may be recommended for vegetation dynamic monitoring because of its outperformance for the cases with considerable phenological changes. However, it is not good at capturing image structure and textures. To overcome the limitations, an enhanced version of Fit-FC, referred as Enhanced-Fit-FC (EFF), was developed. The EFF method can be applied with one (unidirectional prediction, Uni-EFF) or two (bidirectional prediction, Bi-EFF) coarse-fine image pairs as input for near real-time or post-growth applications. The visual and quantitative assessments indicated that EFF mitigated the blurring effect of Fit-FC and generated accurate reflectance, especially Bi-EFF contributed to capturing land cover changes. Compared with Fit-FC, the correlation coefficient (CC) and quality index (QI) of EFF increased by more than 0.12, and the root mean square error (RMSE) decreased by 0.16 at the maximum. Further, we identified the robustness and adaptability of deep neural network (DNN) model for time-series LAI estimation. The results substantiated the effectiveness of DNN in dealing with nonlinear problems and alleviating spectral saturation with higher CC and lower RMSE and relative RMSE (rRMSE) at whole growth-stages (CC= 0.91, RMSE= 0.28, and rRMSE= 7.18%) and vegetative stage (CC=0.94, RMSE=0.24, and rRMSE= 5.81%). In conclusion, the EFF method proposed in this study is competent in constructing time-series synthetic images for near real-time or post-growth applications. Moreover, the DNN model shows the potential for LAI estimation at whole growth-stages. This research not only contributes to dense time-series remote sensing-based applications (e.g., land cover change monitoring, yield forecast), but also is valuable for high-spatial-precision farmland management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到 ,获得积分10
3秒前
7秒前
huisu完成签到,获得积分10
7秒前
9秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助加快步伐采纳,获得10
12秒前
动漫大师发布了新的文献求助20
12秒前
pcr163应助迷路中的骑手采纳,获得30
13秒前
15秒前
15秒前
16秒前
19秒前
墨月白发布了新的文献求助30
20秒前
Luke Gee完成签到 ,获得积分10
21秒前
加快步伐发布了新的文献求助10
23秒前
希望天下0贩的0应助小杨采纳,获得10
27秒前
27秒前
28秒前
共享精神应助高大头采纳,获得10
29秒前
30秒前
33秒前
daguan完成签到,获得积分10
34秒前
荣源完成签到,获得积分10
35秒前
hyt发布了新的文献求助10
36秒前
37秒前
荣源发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098