医学
急性呼吸窘迫
回顾性队列研究
急性呼吸窘迫综合征
机器学习
临床试验
随机对照试验
观察研究
内科学
重症监护医学
肺
计算机科学
作者
Manoj V. Maddali,Matthew M. Churpek,Tài Pham,Emanuele Rezoagli,Hanjing Zhuo,Wendi Zhao,June He,Kevin Delucchi,Chunxue Wang,Nancy Wickersham,J. Brennan McNeil,Alejandra Jáuregui,Serena Ke,Kathryn Vessel,Antonio Gomez,Carolyn M. Hendrickson,Kirsten N. Kangelaris,Aartik Sarma,Aleksandra Leligdowicz,Kathleen D. Liu
标识
DOI:10.1016/s2213-2600(21)00461-6
摘要
Two acute respiratory distress syndrome (ARDS) subphenotypes (hyperinflammatory and hypoinflammatory) with distinct clinical and biological features and differential treatment responses have been identified using latent class analysis (LCA) in seven individual cohorts. To facilitate bedside identification of subphenotypes, clinical classifier models using readily available clinical variables have been described in four randomised controlled trials. We aimed to assess the performance of these models in observational cohorts of ARDS.
科研通智能强力驱动
Strongly Powered by AbleSci AI