Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning

暖通空调 能源消耗 计算机科学 数据预处理 露点 特征选择 数据挖掘 机器学习 空调 工程类 机械工程 电气工程 物理 气象学
作者
Ziwei Xiao,Wenjie Gang,Jiaqi Yuan,Zhuolun Chen,Li Ji,Xuan Wang,Xiaomei Feng
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:258: 111832-111832 被引量:65
标识
DOI:10.1016/j.enbuild.2022.111832
摘要

Accurate energy consumption prediction is the basis of predictive control for heating, ventilation and air conditioning (HVAC) systems. Data-driven models are widely used for energy consumption prediction. The prediction accuracy can be affected by data preprocessing or selection, which are not well studied yet. This paper attempts to study the impacts of different data processing methods and feature selection on the HVAC energy consumption prediction based on data-driven models. Long and short-term memory models are developed based on historical data to predict the day-ahead hourly energy consumption of HVAC systems. Two data smoothing methods, Gaussian kernel density estimation and Savitzky-Golay filter, are selected and compared. The impacts of feature selection, training set volumes and update frequency of models are analyzed and compared. To obtain general results of the above problems, three office buildings are selected. Results show that the smoothing methods can not ensure the improvement in accuracy by removing the exceptional data in the raw data which arise reasonably in practice. The inputs with raw 1-day historical energy consumption, the dry-bulb temperature and dew-point temperature in the next day, holiday type and day type is recommended to predict day-ahead HVAC energy consumption. It is recommended to use a larger training set if computing cost is acceptable. The model should be updated after being used for over 7 weeks. This study would guide the development of prediction models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斑马妞完成签到,获得积分10
1秒前
Feng发布了新的文献求助10
2秒前
对苏发布了新的文献求助20
2秒前
2秒前
小芦铃发布了新的文献求助10
3秒前
迅速的鹤完成签到,获得积分10
3秒前
SSSSscoliosis完成签到,获得积分10
3秒前
我一拳打树上完成签到,获得积分10
4秒前
傻傻发布了新的文献求助10
4秒前
三愿完成签到 ,获得积分10
4秒前
谓风完成签到,获得积分10
4秒前
科研通AI5应助火星人采纳,获得10
5秒前
manan发布了新的文献求助10
6秒前
晓生发布了新的文献求助10
10秒前
10秒前
Feng完成签到,获得积分10
11秒前
晏清完成签到,获得积分10
12秒前
失眠醉易应助Minguk采纳,获得10
12秒前
s橙子味日出_完成签到 ,获得积分10
12秒前
13秒前
orixero应助小芦铃采纳,获得10
13秒前
白宇完成签到,获得积分10
15秒前
15秒前
一颗星完成签到,获得积分10
15秒前
糖糖糖发布了新的文献求助10
15秒前
15秒前
咯噔完成签到,获得积分10
17秒前
一颗星发布了新的文献求助10
17秒前
整齐的电源完成签到 ,获得积分10
19秒前
康康XY完成签到 ,获得积分10
20秒前
研友_pLwBm8发布了新的文献求助10
20秒前
桐桐应助小西米采纳,获得10
20秒前
贪玩绿草完成签到 ,获得积分10
20秒前
天天向上发布了新的文献求助10
20秒前
科研通AI5应助WQY采纳,获得10
22秒前
明理问柳完成签到,获得积分10
23秒前
24秒前
晓生完成签到,获得积分10
24秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777