亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-sided Disassembly Line Balancing Problem with Sequence-Dependent Setup Time: A Constraint Programming Model and Artificial Bee Colony Algorithm

计算机科学 工作站 序列(生物学) 人工蜂群算法 元启发式 数学优化 算法 直线(几何图形) 约束规划 整数规划 约束(计算机辅助设计) 线性规划
作者
Zeynel Abidin Çil,Damla Kizilay,Zixiang Li,Hande Öztop
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 117529-117529
标识
DOI:10.1016/j.eswa.2022.117529
摘要

• TDLBP-SDST is handled for the first time in the literature. • The proposed CP model for the TDLBP obtains the optimal results. • The MILP models and CP approach are proposed to solve the TDLBP-SDST. • Effective four metaheuristic approaches are also developed for the TDLBP-SDST. • TDLBP-SDST aims to minimize mated workstations and workstations, respectively. The large-size products can allow workers to perform tasks on both sides of the line. Hence, a two-sided disassembly line is preferred to ensure several advantages, such as a shorter line. The two-sided disassembly line balancing problem (TDLBP) is relatively new in the literature. This study considers the two-sided disassembly line balancing problem with sequence-dependent setup time (TDLBP-SDST) to reflect the real practice better, as sequence-dependent setup times may exist between tasks in many real-life applications. To the authors’ best knowledge, sequence-dependent setup time has not been considered for the TDLBP in the current literature. The proposed problem creates a more complicated problem. Therefore, proposing effective solution techniques is more critical for obtaining better results. This study proposes two new mixed-integer linear programming models and a novel constraint programming (CP) model to define and solve the TDLBP-SDST. A genetic algorithm, an artificial bee colony algorithm, and the improved versions of these two algorithms are also developed to solve the large-size problems due to the NP-hardness of the TDLBP-SDST. Furthermore, a novel CP model is proposed for the standard TDLBP without considering sequence-dependent setup times. Initially, we compare the performance of the proposed CP model to those of the previous state-of-the-art methods in the literature for the TDLBP without sequence-dependent setup time. The computational results show that the proposed CP model outperforms all the other solution methods and reports the best-known results for all existing benchmark instances for the TDLBP. Then, we present the computational results of the proposed models and algorithms for the TDLBP-SDST. Computational study on a comprehensive set of generated instances indicates that the proposed solution methods effectively solve the TDLBP-SDST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx完成签到 ,获得积分10
2秒前
Ava应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
18秒前
林曳完成签到 ,获得积分10
18秒前
小巫发布了新的文献求助10
23秒前
小巫完成签到,获得积分10
31秒前
茜茜完成签到 ,获得积分10
56秒前
李健的小迷弟应助玄音采纳,获得10
1分钟前
1分钟前
玄音发布了新的文献求助10
1分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
Fischl完成签到 ,获得积分10
2分钟前
2分钟前
zjz完成签到,获得积分10
2分钟前
zjz发布了新的文献求助10
2分钟前
janejane发布了新的文献求助10
2分钟前
Nuyoah完成签到 ,获得积分10
3分钟前
janejane完成签到 ,获得积分20
3分钟前
Hans完成签到,获得积分10
3分钟前
3分钟前
泥娃娃完成签到,获得积分10
4分钟前
ding应助wizardz采纳,获得10
5分钟前
5分钟前
5分钟前
熄熄发布了新的文献求助30
5分钟前
wizardz发布了新的文献求助10
5分钟前
虚心柠檬完成签到 ,获得积分10
5分钟前
sswaggyc完成签到,获得积分10
5分钟前
NexusExplorer应助lynn采纳,获得10
6分钟前
滕皓轩完成签到 ,获得积分20
6分钟前
6分钟前
lynn发布了新的文献求助10
6分钟前
lynn完成签到,获得积分10
6分钟前
现代CC完成签到 ,获得积分10
7分钟前
7分钟前
我爱高数发布了新的文献求助10
7分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
8分钟前
我爱高数完成签到,获得积分10
8分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824966
求助须知:如何正确求助?哪些是违规求助? 3367312
关于积分的说明 10445167
捐赠科研通 3086684
什么是DOI,文献DOI怎么找? 1698158
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769880